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Abstract

Dynamic electricity prices expose households to the risk of extremely high electric-
ity bills during scarcity events. To protect households from high scarcity prices, I
explore how to combine dynamic electricity prices with forward hedging. I derive
household-specific optimal forward hedge shares by applying a utility maximization
model to 2,159 UK households exposed to dynamic prices. The average optimal
hedge share is 59% of households’ baseline consumption. Hedge shares are higher
for electric heating and electric vehicle owners and lower for solar PV and bat-
tery storage owners. My key theoretical finding is that an increase in households
price elasticity of demand raises optimal hedge shares if households face positive
correlation between electricity prices and their weather-related desire to consume
electricity. Forward hedging effectively reduces electricity bill volatility by 18% for
price-inelastic households. When exposing households to scarcity events, hedging
achieves sizable welfare gains equivalent to 19% reduction in average electricity
prices.
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1 Introduction

Many economists emphasize the benefits of exposing households to dynamic electricity
prices. Dynamic prices are linked to day-ahead electricity prices and fluctuate on a short-
term basis, e.g., every half hour. They incentivize households to reduce consumption
during periods of high aggregate demand or scarce electricity supply. Thereby, dynamic
prices help mitigate demand peaks and improve the integration of intermittent renew-
able generation into the energy system. This makes electricity markets more efficient
(Houthakker (1951), Borenstein (2005), Borenstein and Holland (2005), Allcott (2011)).1

A drawback of dynamic pricing is that it makes consumers vulnerable to extremely high
prices when electricity is scarce. When power demand exceeds supply, regulators set high
scarcity prices for electricity in many power markets (Cramton, 2017).2 For example,
during the winter storm in Texas in February 2021, a scarcity price of 9$/kWh was enforced
for more than 64 hours over multiple days in response to a severe electricity shortage
(ERCOT, 2022). As a result, the small minority of households exposed to dynamic
prices received electricity bills exceeding $100 per day (EIA, 2022). These extremely high
bills sparked a public debate about whether dynamic pricing is suitable for households
(McDonnel et al., 2021).

To address these concerns, economists proposed to complement dynamic price tariffs with
a forward hedge (Borenstein (2007), Wolak and Hardman (2022), Winzer et al. (2023),
Schlecht et al. (2023)). The objective of the forward hedge is to protect households
from high electricity prices while preserving incentives to reduce demand when needed
most, namely during scarcity events (Bobbio et al., 2022b). The German government
recently introduced subsidized forward contracts known as gas and electricity price brakes
to reduce consumers’ exposure to soaring energy prices while incentivizing them to save
scarce energy (Dertwinkel-Kalt & Wey, 2023).

To illustrate how a forward hedge works, consider a household with a typical daily con-
sumption of 20 kWh. The household is offered to buy 100% of its typical consumption
forward at a price of 0.2$/kWh. It pays 4$ (=20kWh*0.2$/kWh) per day for this hedge.
During a Texas-style scarcity event, when the electricity price is 9$/kWh all day, the
household pays the scarcity price only for the deviation of its realized consumption from
the hedged quantity of 20 kWh. If the realized consumption is 20kWh, the household only

1Borenstein and Holland (2005) find that wide adoption of dynamic prices would lead to substantial
efficiency gains in the long run, reducing consumers’ total electricity bill by 3-11% in California. In the
short run, Holland and Mansur (2006) obtain only small welfare gains for consumers that translate to a
0.24-2.5% reduction in total electricity bills. Holland and Mansur (2006) also reveal that dynamic prices
reduce the volatility of wholesale electricity prices and load.

2The objective of scarcity prices is to induce all available power plants to operate at maximum level
and to provide incentives for investments in additional generation capacity (Cramton, 2017).
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pays 4$ for the hedge and is fully protected from the high scarcity price.

If the household reduces its consumption below the hedged quantity, e.g., to 15 kWh, it
is remunerated for the negative deviation of 5 kWh at the scarcity price. This results in a
daily bill of −41$ (= 4$ + (−5kWh) ∗ 9$/kWh). The hedge rewards households for doing
what is socially desirable: reducing consumption when electricity is scarce. Conversely, if
the household consumes more than 20 kWh, say 25kWh, the positive deviation of 5kWh
leads to a high daily bill of 49$ (=4$ + 5 kWh ∗ 9$/kWh). This high bill creates a strong
incentive to reduce consumption during scarcity. At the same time, the hedge protects the
household from the far higher 225$ bill it would face without the hedge. Moreover, the
household can choose to hedge more than 100% of its typical consumption to be better
protected against high prices (Bobbio et al., 2022b).

In this paper, I calculate household-specific optimal hedge shares, i.e., the optimal share
of typical consumption that a household should buy forward. I simulate these optimal
shares for a dataset of 2,159 UK households that received half-hourly dynamic prices but
no forward hedge.

A hedge share is defined as optimal if it maximizes households’ expected utility. Optimal
hedge shares may vary by time of day to account for intraday load patterns. I study
how optimal hedge shares are influenced by households’ price elasticity of demand, risk
aversion, and ownership of technologies like electric heating and vehicles, and battery
storage. To estimate welfare gains, I calculate the price premia households should be
willing to pay for being optimally hedged.

To derive the optimal hedge shares, I solve a two-stage utility maximization model via
backward induction. In the second stage, households do not face any uncertainty. They
maximize their utility from electricity consumption and aggregate consumption of other
goods. I assume a constant-elasticity-of-substitution utility function and exogeneously
choose households’ elasticity of substitution and their coefficient of relative risk aversion.
Moreover, I suppose that each household spends, on average, 2% of its income on elec-
tricity since I observe household expenditure only for electricity and not for other goods.
This assumption is consistent with electricity’s average expenditure share in the UK (UK
ONS, 2021).

In the first stage of the model, households choose optimal hedge shares subject to stochas-
tic electricity prices and quantity shocks. Quantity shocks capture all factors except prices
that impact agents’ desire to consume electricity. For instance, the weather or a national
holiday influence households’ desire to consume. The model allows deriving the unobserv-
able quantity shocks as a residual of households’ observable unhedged electricity demand.

My main contribution is to examine the interaction between price elasticity of demand
and optimal hedging when agents face two volatile factors: Prices and quantity shocks.
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Previous literature analyzed how price elasticity affects optimal hedge shares when prices
are the unique volatile factor (Moschini and Lapan (1992), Dionne and Santugini (2015)).
They argue that optimal hedge shares decline if agents’ price elasticity increases. Price-
elastic agents are less vulnerable to high prices because they can reduce demand when
prices are high. Hence, price-elastic agents need to hedge less when prices are the unique
volatile factor.

However, electricity consumers also face volatile quantity shocks. Their desire to consume
electricity depends heavily on external shocks like extreme weather. Only a few authors
consider how quantity shocks influence hedge shares (Losq (1982), Cowan (2004)). They
find that optimal hedge shares increase if prices and quantity shocks are positively corre-
lated.

My key result is that this correlation also determines how an increase in price elastic-
ity affects hedge shares. When prices and quantity shocks are positively correlated, an
increase in price elasticity raises hedge shares. Assume price elasticity increases for a
household with electric heating. During a winter storm, the increased price elasticity
induces this household to reduce consumption more strongly in response to high scarcity
prices. However, reducing consumption during a winter storm causes large disutility for
an electric heating owner since she needs electricity to heat her home. As a response, the
more price-elastic electric heating owner increases her hedge share to reduce her exposure
to spot prices. Lower spot price exposure allows her to maintain an acceptable level of
consumption even during a winter storm when both prices and her desire to consume
electricity are extremely high.

In contrast, when prices and quantity shocks are negatively correlated, an increase in
price elasticity decreases hedge shares. In this case, responding more strongly to high
prices causes small disutility because households desire to consume is low when prices are
high. Hence, increasing price-elasticity makes households less vulnerable to high prices
since they respond by reducing consumption without suffering large disutility. Therefore,
they need to hedge less.

From these theoretical observations, I calculate optimal hedge shares for each household in
my sample. The average optimal hedge share is 59% of households’ typical consumption.
Optimal hedge shares differ widely both between customers and for a specific customer
by time of day. Ownership of low-carbon technologies partly explains the heterogeneity in
hedge shares. Electric heating or electric vehicle owners have high average hedge shares
of 77% and 69%, respectively. These technologies likely increase the positive correlation
between prices and quantity shocks. On the other hand, solar PV owners hedge on average
only 22% of their typical consumption, indicating that their electricity consumption from
the grid is negatively correlated with prices. Battery storage ownership is also associated
with a slightly lower mean hedge share of 52%.
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An exogeneous increase in price elasticity of demand further amplifies the dispersion in
hedge shares. Some households respond to higher price elasticity by reducing their hedge
shares to exploit the negative correlation between prices and quantity shocks. Other
households with a positive correlation increase hedge shares. On average, optimal hedge
shares decline when price elasticity rises. In contrast, increasing risk aversion has a
positive effect on hedge shares. This positive effect rapidly diminishes with the level of
risk aversion.

The optimal hedge is effective in reducing the volatility of monthly electricity bills. In my
main specification, the optimally hedged tariff reduces households’ coefficient of variation
of monthly bills, on average, by 18% compared to an unhedged tariff. Hedging is particu-
larly effective for households with large average hedge shares beyond 100% of their typical
consumption. For these households, the hedge reduces their coefficient of bill volatility by
45%. Such households even experience lower bill volatility when optimally hedged than
under a fixed-price tariff. The fixed tariff protects households only from price volatility,
while the optimally hedged tariff protects from volatility in both prices and consumption
(Borenstein, 2007).

An increase in price elasticity makes the optimal hedge less effective in reducing bill
volatility. Price-elastic households consume more when prices are high on the optimally
hedged tariff than on the unhedged tariff because the hedge weakens households’ exposure
to spot prices and lowers their price-response. Consuming more when prices are high raises
bill volatility. When assuming high price-elasticity, some households even face higher bill
volatility on the optimally hedged tariff than on the unhedged one.

Similarly, if households become more risk-averse, the optimally hedged tariff achieves
smaller reductions in bill volatility compared to the unhedged tariff. High risk aversion
induces households to choose higher hedge shares and thereby lowers households’ exposure
to spot prices. As explained above, low spot price exposure can increase bill volatility for
price-elastic households.

Optimal forward hedging results in tiny welfare gains for households during my sample
period. Augmenting a dynamic tariff with a forward hedge leads to a welfare gain com-
pared to an unhedged dynamic tariff that translates, on average, to a 0.3% reduction
in mean electricity prices. In contrast, dynamic pricing itself achieves more significant
average welfare gains equivalent to a 0.8-4% reduction in mean electricity prices.

The welfare gain from hedging increases to a more substantial 19% reduction in mean
electricity prices when simulating a scarcity event like the Texas winter storm. Hedging
is more valuable to consumers if they face worst-case events with extremely high prices.
I simulate such a scarcity event by artificially exposing households’ to extremely high
electricity prices over multiple days.
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The small welfare gain from hedging without scarcity events can be partly explained by
electricity’s small share in household expenditure. UK households spend only 2% of their
income on electricity (UK ONS, 2021). Electricity’s expenditure share will likely increase
substantially in the upcoming decades due to electrification of mobility and heating.
Therefore, the relevance of hedging electricity prices might increase. However, for the
given sample, the average simulated welfare gain from hedging only increases to 1.6% even
when assuming that households spend a much larger income share of 10% on electricity.

My paper presents a partial equilibrium analysis. Households’ hedging decisions do not
affect electricity prices. In general equilibrium where all consumers are on dynamic and
optimally hedged tariffs, the welfare effects of hedging are likely lower. Dynamic pricing
mitigates price peaks and, thereby, reduces price volatility. When price volatility is lower,
hedging creates smaller welfare benefits.

I structure my paper as follows: Section 2 relates this paper to the optimal hedge liter-
ature. Section 3 describes a utility maximization model to derive optimal hedge shares
and price premia for the optimal forward hedge. In section 4, I parameterize the model
to simulate optimal hedge shares for real-world domestic consumers. Section 5 presents
the data set, and section 6 discusses the simulation results. Section 7 concludes.

2 Literature review

This paper contributes to the literature on optimal forward hedge shares. Danthine (1978),
Holthausen (1979), and Feder et al. (1980) identify optimal hedge shares and production
decisions for price-inelastic firms when selling prices are uncertain. Their main insight is
the “separation result”: Production decisions only depend on the forward price and not
on risk attitudes. In contrast, hedge shares depend on risk attitudes and expectations
about future prices. Moreover, they find that price-inelastic firms should hedge 100% of
their production when forward hedge prices equal expected spot prices.

McKinnon (1967), Rolfo (1980), Losq (1982), and Lapan and Moschini (1994) derive opti-
mal hedge shares for firms in industries like agriculture where both prices and production
are uncertain. McKinnon (1967) highlights that a positive correlation between prices and
production is a major motive for firms to increase hedge shares beyond 100%.

The literature also explores how optimal hedge shares change when alternative risk man-
agement tools are available. For example, if firms are price-elastic, their optimal hedge
share is lower since they can flexibly adjust their production after price uncertainty re-
solves (Moschini and Lapan (1992), Dionne and Santugini (2015)). Similarly, storage and
buffer stocks provide flexibility and reduce the need for high hedge shares (McKinnon
(1967), Newbery and Stiglitz (1981), Gemmill (1985), Gilbert (1985)). In the context

5



of this paper, battery storage will likely gain importance as a risk management tool for
electricity consumers.

Moreover, multiple authors derive optimal hedge shares when firms combine forward con-
tracts with alternative derivatives like options (Moschini and Lapan (1992), Brown and
Toft (2002), Gay et al. (2002), Mnasri et al. (2017)). They argue that when the uncer-
tainty concerning quantity is high, forward contracts are less effective than options to
protect firms from profit fluctuations. The key difference is that forward contracts have a
linear payoff structure, while options have a nonlinear one. When both prices and quan-
tities are uncertain, firms’ profits are nonlinear in prices. Therefore, nonlinear options
provide better risk protection (Moschini and Lapan (1992), Sakong et al. (1993)). Brown
and Toft (2002) customize the optimal payoff structure for a value-maximizing firm using
a portfolio of forward contracts and exotic nonlinear derivatives.

Studies on hedging for small retail consumers are rare since they typically do not have
access to forward markets (Newbery, 1989). Various researchers examine hedge decisions
for large consumers like load-serving entities in electricity markets. Load-serving entities
buy electricity on wholesale markets with volatile prices and sell it to retail consumers at
fixed rates. They face high price and demand uncertainty caused by unique characteristics
of electricity. Electricity demand fluctuates and is mostly price-inelastic. Large-scale
storage is often unavailable or expensive. Moreover, electricity prices and demand are
positively correlated as they both depend on weather conditions. Oum and Oren (2010),
Zhou et al. (2017), and Azevedo et al. (2007) characterize the optimal hedge position for
load-serving entities. They stress the importance of augmenting forward contracts with
nonlinear options, given the large quantity uncertainty that load-serving entities face.

Antother tool that load-serving entities can use to mitigate risk are time-varying tariffs
like time-of-use, critical peak pricing, peak time rebate, or dynamic tariffs (Faruqui, 2012).
Time-varying tariffs reduce risk for load-serving entities as they mitigate the positive cor-
relation between wholesale prices and demand (Zhou et al., 2017). They do so by charging
end customers higher prices when wholesale prices are (expected to be) high. Numerous
studies reveal that end customers lower their electricity consumption in response to high
short-term prices. In a literature survey of 36 studies, Espey and Espey (2004) report an
average short-term price elasticity of electricity demand of −0.35.

On the other hand, time-varying tariffs increase the risk exposure for retail consumers,
especially on fully dynamic tariffs (Borenstein (2007), Faruqui (2012)). Many economists
acknowledge the need to augment dynamic tariffs with risk management tools like price
caps or collars3, forward contracts, or options (Barbose et al., 2004). Caps and collars are
suitable for protecting customers from high price spikes. However, caps are typically too

3Price collars allow the electricity price for retail consumers to vary, but it cannot be higher than a
specified price cap or lower than a price floor (Goldman et al., 2004).
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low to incentivize customers to lower consumption sufficiently during scarcity events (Bob-
bio et al., 2022b). Nonlinear derivatives like options are arguably too complex, especially
for households and small business consumers. Therefore, multiple researchers propose for-
ward contracts as an appropriate hedging tool for consumers (Borenstein (2007), Wolak
and Hardman (2022), Bobbio et al. (2022b), Schlecht et al. (2023)).

Since the 1990s, several US utilities have offered commercial customers dynamic tariffs
with a forward hedge, known as two-part tariffs (Braithwait and Eakin (2002), Barbose et
al. (2005)). While most utilities let customers only buy exactly 100% of their typical con-
sumption forward, some utilities allow them to choose a different hedge share (O’Sheasy
(1998), Stavrogiannis (2010)). In this paper, I compare the effectiveness of a simple 100%
hedge tariff used by most utilities to a tariff with an optimal forward hedge.

My paper is closest to Borenstein (2007), Stavrogiannis (2010), and Winzer et al. (2023).
They do not derive optimal hedge shares but simulate how effective various arbitrary hedge
shares are to reduce the volatility of electricity bills. For household samples, Stavrogiannis
(2010) and Winzer et al. (2023) find that a tariff with a 100% forward hedge effectively
reduces bill volatility compared to an unhedged dynamic tariff. For a sample of large
industrial consumers in California, Borenstein (2007) reveals that 77% of consumers can
reduce their bill volatility even further by choosing a hedge share above 100%. Such
consumers face a strong positive correlation between consumption and prices. These
findings suggest that a simple 100% hedge might only be optimal for few consumers.

My paper differs from Borenstein (2007) and Stavrogiannis (2010) as they assume con-
sumers to be risk-neutral and price-inelastic. They suppose consumers do not change their
consumption when transferred to a dynamic tariff with a forward hedge. In contrast, I
study the interaction between price elasticity and hedging. Specifically, I simulate how
households adjust their consumption in response to being optimally hedged.

I build on models by Gilbert (1985) and Cowan (2004) to simulate optimal forward hedge
shares with quantity shocks. Cowan (2004) derives optimal hedge shares for price-elastic
and risk-averse electricity consumers facing quantity shocks. Hedge shares increase in
consumers’ coefficient of relative price risk aversion and the correlation between price
and quantity shocks. Hedge shares decline in consumers’ income elasticity of demand. I
extend Cowan’s (2004) analysis by examining the effect of an exogenous increase in price
elasticity on hedge shares. I also study how the ownership of technologies like electric
heating and battery storage affects hedging decisions.

Apart from the literature on optimal hedge shares, I also contribute to the literature that
studies how price stabilization and hedging influence consumer welfare (Waugh (1944),
Turnovsky et al. (1980), Newbery and Stiglitz (1981), Gilbert (1985), Cowan (2004)).
These authors emphasize that dynamic prices can increase welfare compared to stabilized
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prices, even for risk-averse consumers, if they are sufficiently price-elastic. Cowan (2004)
reveals that optimal forward hedging always positively impacts consumer welfare under
pure price volatility. I extend his analysis by showing that the positive welfare effect of
hedging declines the more negatively prices and quantity shocks correlate.

3 Model

3.1 Optimal hedge shares

Below, I employ a two-stage model based on Gilbert (1985) and Cowan (2004). It allows
for deriving optimal hedge shares via backward induction, starting with the second stage.

Second stage: Households choose between electricity consumption x and aggregate con-
sumption of other goods y to maximize the indirect utility function V :

V (p,b,ε,f,h) = max
x,y

{U(x,y,ε)|xp+y ≤ b+(p−f)h∗} (1)

Household utility depends on quantity shock ε. The quantity shock captures all fac-
tors except prices that impact households’ desire to consume electricity, such as weather,
national holidays, or a national sports event on TV. Households choose the optimal con-
sumption bundle subject to their income b,4 dynamic electricity price p > 0, forward hedge
price f , and the optimal hedge quantity h∗ that was chosen in stage 1. Prices for y are
normalized to 1. The indirect utility function V is assumed to be concave in budget b

with Vb > 0 and Vbb < 0 being its first and second derivatives with respect to b.

There is no uncertainty in the second stage. Households observe electricity prices and
quantity shocks.

First stage: Households choose the optimal hedge quantity h∗ that maximizes their
expected utility given stochastic electricity prices p̃ and quantity shocks ε̃.

h∗ = arg max
h

E[V (p̃, b, ε̃,f,h)] (2)

Following McKinnon (1967) and Lapan and Moschini (1994), prices and quantity shocks
can be correlated and are described via a bivariate normal distribution. Lapan and
Moschini (1994) find that optimal hedge shares are robust to assumptions on utility
functions and distributions of stochastic elements. For risk-averse profit-maximizing firms,

4The budget constraint with a forward hedge can be formulated in two equivalent ways: The first
formulation is fh+(x−h)p+y ≤ b. This formulation states that the household pays fh for the forward
hedge and the dynamic price p only for the deviation of its consumption x from the hedge quantity h.
Rearranging the first formulation leads to the second equivalent formulation xp+y ≤ b+(p−f)h as given
in equation (1) (Braithwait & Eakin, 2002).
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they derive similar hedge shares when comparing utility functions with constant absolute
risk aversion and constant relative risk aversion, respectively, both under normal and
lognormal distributions of prices and stochastic production.

Assuming an interior solution, the first-order condition of equation (2) is given by5

E[Vb(p̃−f)] = 0 (3)

Letting p = E[p̃] and ε = E[ε̃] represent expectations of prices and quantity shocks, a
first-order Taylor approximation of Vb about (p,ε) yields

Vb ≈ V b +V bp̃(p̃−p)+V bbh(p̃−p)+V bε̃(ε̃− ε). (4)

V b = Vb(p,b,ε,f,h) is the first derivative of household’s baseline utility level, i.e., its utility
from choosing the optimal consumption bundle when the random factors p̃ and ε̃ are at
their average. V bp̃, V bb, and V bε̃ denote derivatives of V b with respect to p̃, b, and ε̃. In
Appendix A, I insert equation (4) into (3) and solve for the optimal hedge quantity h∗.

h∗ = −
V bp̃

V bb
− V bε̃

V bb

σp̃ε̃

σ2
p̃

− b

θ

(f −p)
σ2

p̃︸ ︷︷ ︸
Speculation

(5)

σp̃ε̃ is the covariance between prices p̃ and quantity shocks ε̃, and σ2
p̃ represents the variance

of prices. θ = −V bb

V b
b is the coefficient of relative risk aversion at baseline.

Equation (5) reveals that h∗ increases in V bp̃ because V bb < 0. If V bp̃ > 0, a high price is
associated with a high marginal utility of income V b. In this case, a large forward hedge
quantity h∗ increases utility because the forward hedge increases income when prices are
high. Increased income causes large utility gains since V b is high when prices are high
(Cowan, 2004).

V bε̃ captures how quantity shock ε̃ influences the marginal utility of income V b. If V bε̃ > 0
and σp̃ε̃ > 0, a large ε̃ is associated with both high V b and high prices in expectation.
In this case, choosing a large hedge quantity h∗ is beneficial because the hedge increases
income when both V b and prices are likely high. In contrast, if V bε̃ > 0 and σp̃ε̃ < 0,
the agent hedges less since p̃ is likely low when ε̃ is large. When a large ε̃ causes a high
V b, corresponding low prices raise the household’s real income. Therefore, the household
reduces h∗.

The last term of equation (5) captures speculative motives for hedging. The household
5The second-order condition is E[Vbb(p̃ − f)2] < 0. It holds if agents are risk-averse and if there

exists some volatility in spot prices (Gilbert (1985), Cowan (2004)). I assume both conditions to hold for
domestic electricity consumers on dynamic tariffs.
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wants to speculate more the higher its income b and the smaller its coefficient of relative
risk aversion θ. Below, I assume that household customers do not hedge for speculative
reasons, i.e., households believe that f = p. Thus the last term in equation (5) equals 0.

Equation (5) describes the optimal hedge quantity h∗ for general concave utility functions.
To simulate hedge shares for real-world consumers, I assume that households’ consump-
tion decisions can be described by a homothetic constant-elasticity-of-substitution (CES)
indirect utility function (Kihlstrom (2009), Lau (2016)).

V (p,b,ε,f,h) = 1
1− θ

[b+(p−f)h∗]1−θ(εp1−α +1)
1−θ
α−1 (6)

where α ̸= 1 is the elasticity of substitution. θ ̸= 1 is the coefficient of relative risk aversion
at baseline. CES utility functions are commonly used to model electricity consumption,
given their analytical tractability (Herriges et al. (1993), Schwarz et al. (2002), Goldman
et al. (2004), Faruqui and Sergici (2011)).6 Applying Roy’s identity to equation (6) yields
the Marshallian demand for electricity.

x∗(p,b,ε,f,h∗) = [b+(p−f)h∗]εp−α

(εp1−α +1)
(7)

The Marshallian demand illustrates how the hedge affects electricity consumption. The
hedge adds (p − f)h∗ to income b to partially compensate for a change in p. It increases
households’ disposable budget when prices are high (p > f) and decreases budget when
they are low (p < f) (Braithwait & Eakin, 2002). Since households’ income elasticity of
demand equals 1, the hedge induces households to increase consumption when prices are
above their average p = f .

In Appendix A, I substitute the derivatives of the CES indirect utility function (6) into
equation (5) to obtain the optimal hedge share:

h∗

x̂∗ =

1− 1
θ

1+ 1
1−α

ρ
cv(ε̃)
cv(p̃)

 (8)

The optimal hedge share is the ratio of the absolute optimal hedge quantity h∗ and the
baseline consumption x̂∗ = x∗(p,b,ε). x̂∗ defines what I previously called the “typical
consumption”. It is not equal to the household’s average consumption but describes how
much a household consumes if p̃ and ε̃ are at their average level. Equation (7) highlights
that x̂∗ does not depend on the hedge quantity h∗ since p = p = f at baseline. Hence, at

6This CES specification has a major drawback: For constant prices and quantity shocks, homoth-
ecity implies that the share of expenditure households spend on electricity remains constant when income
increases. Empirically, electricity’s expenditure share typically decreases with income. In the UK, elec-
tricity’s expenditure share ranges from 4% for the lowest income decile to 1.3% for the highest decile in
2020 (UK ONS, 2021).
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baseline, the optimally hedged household consumes as if it was unhedged.

On the right hand side of equation (8), ρ depicts the coefficient of correlation between
p̃ and ε̃. cv(p̃) and cv(ε̃) are the coefficients of variation of p̃ and ε̃, respectively. The
optimal hedge share increases in the coefficient of relative risk aversion θ. If prices and
quantity shocks are uncorrelated, the optimal hedge share approaches 1 when households
become infinitely risk-averse. The lower households’ risk aversion relative to their income
elasticity of demand, the more the optimal hedge share decreases.7

A positive correlation ρ between quantity shocks and prices leads to higher optimal hedge
shares. For example, if a household uses electric heating, it likely has a high desire
to consume electricity when temperatures are low. Electricity prices are typically also
high when temperatures are low due to high aggregate demand. Thus, households with
electric heating face a positive correlation between electricity consumption and prices.
This positive correlation makes households vulnerable to high electricity prices since they
consume a lot when prices are high. Therefore, households with electric heating likely
have high optimal hedge shares.

An increase in the substitution elasticity α further raises optimal hedge shares when the
correlation between price and quantity shocks is positive (at least for reasonably small
substitution elasticities, i.e., α < 1). For a constant h∗, increasing α makes households’
price elasticity of demand γ more negative if the substitution effect of a price change
exceeds the income effect.

γ = ∂x∗

∂p

p

x∗ = h∗p

[b+(p−f)h∗]
−(1− s)α︸ ︷︷ ︸
Substitution

effect

−s︸︷︷︸
Income
effect

(9)

s = px∗(h∗=0)
b < 1 is electricity’s expenditure share for unhedged households. For electricity

consumers, the substitution effect typically dominates the income effect since electricity’s
share in household income is small. Therefore, households’ demand becomes more price-
elastic when the substitution elasticity α rises. An increase in price elasticity induces
households to reduce consumption when prices are high. When ρ > 0, households par-
ticularly dislike a reduction in consumption since high prices are associated with a high
desire to consume electricity. Thus, the household raises the hedge share h∗ to reduce
its price elasticity. As equation (9) illustrates, hedging reduces price elasticity since it
mitigates exposure to spot prices. Thereby, the hedge ensures that consumption does not
decrease too much when both prices and the desire to consume are high. On the other
hand, increasing α reduces hedge shares when ρ < 0. A higher α makes the correlation
between prices and consumption even more negative since more price-elastic households

7In general, the first term of equation (8) is given as 1− η
θ for every concave utility function. η is the

income elasticity of demand at baseline. η = 1 for the CES utility function in equation (6).
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consume more when prices are low and the desire to consume electricity is high. In this
case, the household reduces its hedge share since it wants to be exposed to low spot prices
when its consumption is high.

To sum up, with quantity shocks, an increase in price elasticity leads to lower hedge shares
only if the correlation between prices and quantity shocks is negative.

3.2 Price premia

This section derives the price premia households are willing to pay to receive a dynamic
electricity tariff with an optimal forward hedge. I follow the literature on the welfare effect
of price stabilization and use a fixed tariff as a benchmark (Hanoch (1977), Turnovsky
et al. (1980), Newbery and Stiglitz (1981), Gilbert (1985)). Thereby, I can derive price
premia for two tariffs: 1) An unhedged dynamic tariff 2) A dynamic tariff with an optimal
forward hedge (optimally hedged tariff). This distinction allows disentangling the two
features of optimally hedged tariffs that impact consumer welfare: dynamic pricing and
forward hedging. Following Gilbert (1985) and Cowan (2004), I assume that the constant
price of the fixed tariff equals the mean dynamic price p = E[p̃].

Price premia for unhedged dynamic tariffs

In the first step, I derive the price premium gp that households are willing to pay on top of
the fixed price to avoid an unhedged dynamic tariff. When unhedged (h = 0), household’s
utility function simplifies to

V (p,b,ε) = 1
1− θ

b1−θ(εp1−α +1)
1−θ
α−1 (10)

Price premium gp equals the percentage increase in fixed price p that makes the household
indifferent in expectation between the fixed tariff and the unhedged dynamic tariff with
stochastic price p̃ (Gilbert, 1985).

E[V ((1+gp)p,b, ε̃)] = E[V (p̃, b, ε̃)] (11)

In Appendix B, I apply Taylor approximations to both sides of equation (11) and solve
for gp.

gp = 1
2

(γ̂ +βu)︸ ︷︷ ︸
= V pp

V p
p

cv(p̃)2 +ρcv(p̃)cv(ε̃)[ βu

1−α
+1− ŝ] (12)

If gp is positive, households want to pay a premium for the fixed tariff. A negative gp

indicates that households would choose the dynamic tariff even if the fixed price was
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smaller than the average dynamic price. The first term on the RHS of equation (12)
captures the effect of pure price volatility on consumer welfare. This term increases in
V pp

V p
p = γ̂ +βu which is the absolute value of Turnovsky et al.’s (1980) coefficient of relative

price risk aversion.8 γ̂ = −α − (1 − α)s equals electricity’s price-elasticity of demand at
baseline. βu = ∂V b

∂p̃
p

V b
= (θ − 1)s is the price elasticity of the marginal utility of income

at baseline for unhedged households. Overall, as long as ρ = 0, dynamic prices increase
welfare for unhedged households if their price-elasticity of demand γ̂ exceeds the price-
elasticity of their marginal utility of income βu in absolute values.

Term 2 of the RHS of equation (12) reveals that households do not only care about price
volatility but also about the correlation ρ between prices and quantity shocks. Price
premium gp increases if ρ > 0. The positive effect of a positive ρ is amplified by an
increase of the price-elasticities of demand γ̂ and of the marginal utility of income βu as
long as α < 1 and θ > 1. Hence, households with price-elastic marginal utility of income
and high substitution elasticity suffer from dynamic prices if prices and quantity shocks
are positively correlated. If ρ is negative, households benefit from dynamic pricing.

Price premia for dynamic tariffs with an optimal forward hedge

In the next step, I derive the price premium gf that denotes the percentage increase in
fixed price p that makes the household indifferent in expectation between the fixed tariff
and the optimally hedged tariff (Gilbert, 1985).

E[V ((1+gf )p,b,ε)] = E[V (p̃, b+(p−f)h∗, ε̃)] (13)

Under the optimal hedge tariff, households buy the optimal hedge quantity h∗ forward as
given in equation (8). Appendix B demonstrates that the price premium gf equals

gf = gp −1
2

βucv(p̃)2 − 1
2

βu

1−α
ρcv(p̃)cv(ε̃)

1− h∗

x̂∗


︸ ︷︷ ︸

gh

(14)

gf consists of two terms: gp captures the welfare effect of dynamic pricing as given in
equation (12). gh = gf − gp describes the welfare effect of optimal forward hedging. If
gh < 0, the optimal hedge increases welfare compared to an unhedged dynamic tariff. gh

will never be positive since households can always choose h∗ = 0 and stay unhedged.

The optimal forward hedge increases welfare by making the marginal utility of income Vb

less elastic to price changes. When optimally hedged, the price-elasticity of Vb at baseline
8The income elasticity of demand at baseline equals 1 with CES preferences.
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is (see Appendix B)

βh∗
= ∂V b

∂p̃

p

V b
= βu − θs

h∗

x̂∗ (15)

βu = (θ −1)s is the price elasticity of the marginal utility of income for unhedged house-
holds. The higher the household’s optimal hedge share h∗

x̂∗ , the more declines the price-
elasticity of the marginal utility of income βh∗ . Inserting the optimal hedge share in
equation (8) into equation (15) yields

βh∗
= − βu

1−α
ρ

cv(ε̃)
cv(p̃)

(16)

If ρ = 0, the optimal hedge makes the marginal utility of income fully inelastic to price
changes (βh∗ = 0). Equation (14) reveals that for ρ = 0, stabilization of Vb raises consumer
welfare whenever βu > 0. βu is positive if households are sufficiently risk-averse with θ > 1.
The welfare benefit from hedging rises in the price volatility cv(p̃)2 (Cowan, 2004).

If βu > 0, ρ > 0 implies βh∗
< 0. In this case, optimal hedging causes the marginal utility

of income Vb to fall when prices increase. If ρ > 0, the optimal hedge share is very high.
Hence, the hedge shifts much income to states of the world when prices are high. This
large income compensation reduces Vb since Vbb < 0. For ρ > 0, the income compensation
strongly raises welfare because both prices and the desire to consume are high. On the
other hand, equation (14) reveals that welfare benefit declines in the optimal hedge share
h∗

x̂∗ . The higher h∗

x̂∗ , the more decreases the benefit from hedging since hedging reduces
households’ exposure to spot prices and, thereby, its price elasticity of demand. For
h∗

x̂∗ > 1, the negative effect on demand elasticity dominates such that the welfare effect of
the second term in gh becomes negative. If ρ < 0, the second term of gh will always lower
welfare since households will never choose a hedge share larger than 1 when ρ < 0.

4 Simulation

Below, I explain how the model in Section 3 allows simulating optimal hedge shares and
hedged electricity bills for real-world consumers. First, I define the hedge product that
consumers can buy. In the example in the introduction, I assumed that households buy
forward a particular share of their daily baseline consumption. However, such a daily
hedge ignores predictable intraday patterns of both consumption and prices. Baseline
electricity consumption and prices are typically low at night and high during morning and
evening peaks. A hedge contract should account for these daily load and price patterns
to better protect against bill volatility (Borenstein, 2007).
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To do so, I define a hedge time segment k as a set of time intervals t.9 Households choose
a quantity to buy forward for every segment k. In the main specification, I define hedge
time segments for every half hour per day for weekdays and weekends. For instance, 8-8:30
am on weekdays is a time segment. Average prices and baseline consumption are similar
on weekdays 8-8:30 am, whether on Monday, Wednesday, or Friday (Bobbio et al., 2022a).
Therefore, households buy the same hedge quantity for all intervals t within 8-8:30 am
on weekdays. Prices and baseline consumption in this time segment likely differ from
average prices and baseline consumption at midnight or 8-8:30 am on weekends. Hence,
households purchase different hedge quantities for those time segments (See Appendix C
for a detailed discussion of time segments).

The approach results in 48 half-hourly hedge time segments and 48 corresponding optimal
hedge shares for weekdays and weekends, respectively. The advantage of such a fine-
grained hedge contract is that it should protect well from bill volatility. On the other
hand, a hedge contract with 96 different hedge shares is too complex to be implemented
in practice. Therefore, the fine-grained hedge contract should be considered a theoretical
benchmark that tests how effectively an optimally hedged tariff can reduce bill volatility.
In Appendix C, I compare the results of this theoretical benchmark to less fine-grained
hedge contracts that contain fewer and longer hedge time segments. Similar to Borenstein
(2007), I find that choosing more granular hedge time segment has only a small effect on
optimal hedge shares. However, I find that more fine-grained hedge segments lead to a
substantially larger reduction in bill volatility.

The households in my sample are currently unhedged. To simulate their optimal hedge
shares, I suppose that households’ observable unhedged half-hourly electricity consump-
tion x∗

t in interval t can be described by the Marshallian demand in equation (7). When
households are unhedged, hedge quantity h equals 0. I invert equation (7) to obtain
an expression for the unobservable quantity shocks εt in interval t as a residual of the
unhedged Marshallian demand (Redding & Weinstein, 2019).10

εt = x∗
t pα

t

bk −xtpt
(17)

I assume that households have a fixed budget bk for hedge time segment k. I do not
observe households’ monthly income, let alone their budget for a half-hourly time segment.

9A time interval t is a specific half-hourly period. For instance, “8-8:30 am on Monday, March 1st,
2021” is a time interval. This interval falls within the hedge time segment “8-8:30 am on weekdays”.

10The Marshallian demand is invertible since xt and yt are "connected substitutes" according to Berry
et al. (2013). The first condition for connected substitutes is that goods are weak gross substitutes. This
condition is satisfied since aggregate consumption of lother goods yt weakly decreases in εt for all t and pt.
The second condition for "connected substitutes" requires that goods are connected strict substitution."
This condition requires that any chain of substitution between goods leads to the outside good (i.e., yt).
Since there are only two goods in the given application, electricity consumption can only be substituted
with the outside good (Berry et al. (2013), Berry and Haile (2016)).
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Surveys reveal that UK households spend on average 2% of their income on electricity
(UK ONS, 2021). Therefore, I assume that, in every segment k, households’ budget share
of electricity st = x∗

t pt
bk

is on average 2%, i.e., sk = 1
Tk

∑
t∈k st = 2%. Tk is the number of

time intervals t that fall into segment k. Households’ absolute budget for segment k can
then be derived as bk = 1

Tk

∑
t∈k

x∗
t pt
sk

.11

The assumption that households spend the same average share of their income on elec-
tricity in every time segment implies that households have a higher absolute budget for
time segments in which they typically consume a lot. For instance, most households have
a higher absolute segment budget on weekdays, 8-8:30 am, than at midnight because
they typically consume more in the morning. Therefore, the segment budget follows each
household’s daily consumption pattern.

An important caveat for my analysis is that the assumption regarding the segment budget
bk affects the optimal hedge shares even for homothetic preferences. Changing bk also
changes the derived quantity shocks εt. Thereby, the choice of bk influences the correlation
between quantity shocks and prices and, ultimately, the optimal hedge shares. As a
robustness check, I, therefore, run simulations for various average segment budget shares
sk in Appendix E. I find that a change in sk only slightly affects optimal hedge shares.

To calculate εt in equation (17), I also choose the substitution elasticity α as a simu-
lation parameter. Previous studies find that the short-run elasticity of substitution for
electricity ranges from 0.07 to 0.21 for domestic electricity consumers (Ericson (2006),
Bartusch (2011)).12 For my main specification, I conservatively set α = 0.1, assuming
that households have a relatively low ability to substitute electricity consumption with
other goods.

Having defined bk and α, I calculate the residual quantity shock εt in equation (17) for
every t in the data set using the observed unhedged half-hourly electricity consumption
x∗

t and prices pt. Then, I calculate the following statistics for every segment k: 1) the
average quantity shock εk and average electricity price pk, 2) the coefficients of variation
cv(ε̃k) and cv(p̃k), 3) the coefficient of correlation ρk between price and quantity shocks.
These statistics allow calculating the baseline consumption x̂∗

k.

Now, I am ready to calculate the optimal hedge share h∗
k

x̂∗
k

in equation (8) for segment k.
For the main specification, I assume that domestic electricity consumers face high levels
of relative risk aversion with θ = 5. Most empirical studies estimate θ in the range from
0 to 6 (Cowan (2004), Lengwiler (2004)). To avoid speculation, I set the forward hedge

11For a tiny number of time intervals (only 0.006% of all intervals), consumption is extremely high
such that the observed expenditure exceeds the the segment budget bk. For these rare intervals, I set the
household budget equal to the observed expenditure on electricity to ensure that households’ electricity
expenditure does not exceed their budget.

12These estimates for the elasticity of substitution either refer to the substitution between electricity
and other energy carriers or the substitution between electricity consumption at different times of day.
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price equal to the average dynamic price in segment k, i.e., fk = E[pt∈k].13 Moreover,
I follow Borenstein (2007) and require the optimal hedge shares to lie between 0% and
200% of baseline consumption to avoid unreasonably extreme hedge shares.

In the next step, I derive monthly electricity bills for optimally hedged households. I con-
sider that the optimal hedge induces income- and price-elastic households to change their
consumption compared to the unhedged tariff. Thus, I calculate the hedged households’
electricity consumption x∗

t∈k with the optimal hedge h∗
k using the Marshallian demand in

equation (7). The electricity bill Bm for month m results by summing over the expenditure
for electricity and the forward hedge for all intervals t ∈ m:

Bm =

 ∑
t∈m

∑
t∈m∪k

[x∗
t pt +(fk −pt)h∗

k]

 ∗ 30
Daysm

(18)

where Daysm denotes the number of days the household spends on the tariff in month
m. The last term normalizes the electricity bills to a 30-day month to make sure that bill
volatility is not caused by variation in the number of days the household spends on the
tariff (see Section 5 and Borenstein (2007)).

5 Data

The data set contains anonymized smart meter readings of half-hourly electricity price
and consumption for 9,718 households in the UK provided by electricity supplier Octopus
Energy. 4,066 households are on dynamic tariffs (“dynamic households”), while 5,652
are on fixed ones (“fixed households”). The data contains smart meter readings for each
household for up to one year between August 2020 and August 2021 (Bobbio et al., 2022a).

Every day between 4-8 pm, Octopus Energy informs dynamic households about the 48
half-hourly dynamic prices for the next day via a smart phone app. Dynamic prices include
distribution charges and a peak-time premium. Appendix D explains how dynamic prices
are calculated.

Households pay dynamic prices only up to a price cap of 0.35č/kWh. The price cap equals
roughly twice the average dynamic prices. During the sample period, the cap only binds
in 3% of the half-hourly periods. Therefore, the price cap has a negligible effect on my
analysis as I discuss in Section 6.5.

Fixed households always receive a constant price for electricity. 8% of fixed tariff cus-
tomers experience a minor adjustment of their fixed rate once during the sample period.

13For existing two-part tariffs with a forward hedge, some utilities set the forward price even below
the average dynamic price to compensate customers for foregone cross-subsidies they would have received
on a fixed tariff (Borenstein, 2007).
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Apart from these one-time adjustments, these households do not face any price volatility.
I do not employ households on fixed tariffs for the optimal hedge simulations. Neverthe-
less, I report the descriptive statistics for these households as a benchmark to analyze
how dynamic prices affect consumption and electricity bills.

Figure 1: Number of customers by
tariff type
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Table 1: Summary statistics

Tariff type mean SD14 min max
Electricity prices (pence/kWh)

Dynamic 15.4 7.3 0.1 35
Fixed 15.2 0.1 15.2 15.3

Monthly consumption (kWh)
Dynamic 516 406 0 4560

Fixed 334 239 0 5040
Monthly electricity bill (GBP)

Dynamic 77 61 0 766
Fixed 50 36 0 798

The households in this sample have been randomly chosen from Octopus Energy’s cus-
tomer base. However, households have self-selected into a tariff type. Hence, households
on dynamic tariffs might systematically differ from households on fixed ones. Households
can also switch to a different tariff or supplier during the sample period. Figure 1 re-
veals a surprisingly high attrition of households on both tariffs. I drop all households
for whom less than eight monthly electricity bills are observable to ensure a meaningful
analysis of bill volatility. Moreover, some households spend less than an entire month on
a specific tariff because they either leave or join the tariff in the middle of the month. I
exclude all observations for months if the household spends less than 15 days on the tariff.
This ensures that at least 720 half-hourly price-consumption observations are available
per household each month. The final dataset contains a relatively large sample of 2,159
dynamic households and 2,540 fixed households.

Table 1 presents summary statistics for households on dynamic and fixed tariffs. The
mean unweighted electricity price is very similar on both tariffs. The standard deviation
of dynamic prices is quite large. Differences in fixed prices are driven by different fixed
price levels across customers.

Table 1 also reveals that dynamic households have a 54% higher average monthly con-
sumption than fixed households. The higher monthly consumption suggests that house-
holds who self-select into dynamic tariffs systematically differ from fixed households. Dy-
namic customers are first movers who might be exceptionally interested in their electricity
usage. Therefore, one should be careful to extrapolate the results of this paper to the
general population of domestic energy consumers. This paper is only informative about
whether forward hedging is effective for first-movers. Nevertheless, energy suppliers should
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be particularly interested in how forward hedge tariffs work for first movers as they will
likely only sell forward hedges to first-movers in the foreseeable future.

Moreover, Table 1 shows statistics on households’ monthly electricity bills. I calculate
these bills by multiplying consumption and prices every half an hour and adding these half-
hourly expenditures every month. Following Borenstein (2007), I normalize all electricity
bills to a 30-day month in order to avoid measuring bill volatility that is purely driven
by variation in days per month or the number of days a household spends on the tariff
in a given month (see Section 4). The higher average consumption of dynamic customers
likely drives their higher average electricity bills.

Table 2: Variation and correlation statistics

Percentiles
tariff type mean 0.01 0.1 0.5 0.9 0.99

Coeff. of variation of monthly bills per customer
Dynamic 0.32 0.10 0.16 0.26 0.57 1.06

Fixed 0.19 0.05 0.08 0.16 0.35 0.65
Coeff. of correlation between prices and consumption

Dynamic -0.007 -0.363 -0.225 -0.005 0.211 0.336

Since this study is concerned with hedging bill volatility for individual customers, Table 2
reports the distributions of coefficients of variation for individual customers’ monthly bills
(Borenstein, 2007). The coefficient of variation of dynamic customers’ electricity bills is,
on average, 67% higher than for fixed customers, suggesting that dynamic prices increase
bill volatility. While this might be unsurprising, it is striking that fixed customers also
face substantial bill volatility. Fluctuations in electricity bills are not only caused by
volatile prices but also by volatility in consumption (Borenstein, 2007).

Moreover, fixed customers in the lowest percentile of the bill volatility distribution have
much lower volatility than dynamic customers in the same percentile. When moving up
the distribution, the difference in bill volatility between fixed and dynamic tariffs declines.
Borenstein (2007) observes a similar tendency in his study. This suggests that dynamic
prices might mainly increase bill volatility for customers who would have low volatility
under fixed tariffs (Borenstein, 2007).

Table 2 also reports the distribution of the correlation coefficient between dynamic elec-
tricity prices and consumption for dynamic customers. While the correlation between
prices and consumption is, on average, close to zero, it varies enormously between cus-
tomers. Some customers face either a significant negative or large positive correlation.

14Average household-specific standard deviation. Since households can choose between multiple dif-
ferent fixed tariff products with different fixed rate levels, the standard deviation across all fixed prices is
slightly larger. In the context of this paper, the household-specific standard deviation is a more relevant
indicator for the price volatility that households perceive.
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Table 3: Summary statistics by low-carbon technology (LCT) ownership

Number of Mean monthly Mean monthly
LCT ownership households consumption (kWh) electricity bill (GBP)
All customers 2159 516 77
Electric heating only 225 352 58
Electring heating +
smart thermostat 221 394 65
EV only 411 635 92
Solar only 101 365 51
Battery only 28 769 114
EV + solar 125 497 67
EV + battery 32 1088 156
Solar + battery 84 437 59
EV + solar + battery 82 592 74

Analyzing the same dataset, Bobbio et al. (2022a) estimate an average price elasticity of
-0.26 for the households in this sample. For a sub-sample, they employ information on
low-carbon technology (LCT) ownership to show that technologies influence households’
price elasticity. Especially ownership of electric vehicles increases price elasticity.

In this paper, I analyze how LCT ownership impacts optimal hedge shares. Table 3 shows
the number of customers for which information on technology ownership is available.
Octopus Energy conducted a survey to gather ownership information for electric vehicles,
solar PV, battery storage, and smart thermostats. For electric heating, ownership is
inferred from a lack of a gas contract with Octopus Energy since households in the UK
typically purchase electricity and gas from the same supplier (Bobbio et al., 2022a).15

Electric vehicles (EV) or battery storage owners have above-average monthly electricity
consumption and monthly bills. Solar PV owners have lower consumption and bills since
they likely cover a portion of their electricity consumption via self-generated solar elec-
tricity. Surprisingly, customers who likely have electric heating consume less electricity
than the average household. Given small sample sizes, the analysis for some LCT groups
(e.g., battery owners) should be interpreted cautiously.

15This might not be an exact indicator for ownership of electric heating. Some households not on a gas
tariff with Octopus Energy might have oil heating rather than electric heating or buy gas from another
supplier (Bobbio et al., 2022a).
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6 Results

6.1 Optimal hedge shares

Figure 2 presents the distribution of optimal hedge shares that I simulate across all house-
holds and time segments. On average, the optimal hedge share is 59% of baseline con-
sumption. There is substantial variation in optimal hedge shares. I set the optimal hedge
share to zero for a surprisingly large share of 14% of the time segments. Otherwise, opti-
mal hedge shares would be negative. The desire to hedge a negative quantity is caused by
a large negative correlation between prices and quantity shocks in these time segments.
Moreover, I set 3% of the hedge shares to 200% to avoid unreasonably large hedge shares.

Figure 2: Distribution of optimal hedge
shares across all time segments
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Figure 3: Distribution of mean optimal
hedge shares by customer
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Heterogeneity between households partly drives the considerable variation in optimal
hedge shares. Figure 3 shows the distribution of the mean optimal hedge share per
household. The mean hedge share for a particular household is defined as the average
of the household’s hedge shares across all time segments. The mean hedge shares differ
widely between households. Overall, mean optimal hedge shares are far smaller than the
ones Borenstein (2007) simulates for a sample of the price-inelastic industrial customers.
Most households find it optimal to hedge on average less than 100% of their baseline
consumption. Only 7% of households in this sample overhedge, i.e., hedge more than
100% of their baseline consumption on average. In contrast, Borenstein (2007) finds that
77% of his inelastic customers should overhedge.

Table 4 suggests that ownership of low-carbon technologies (LCTs) partly explains the
heterogeneity in mean optimal hedge shares. Households with electric heating or an elec-
tric vehicle (EV) have a larger mean optimal hedge share than the average household in
the sample. These appliances seem to increase the positive correlation between a house-
hold’s consumption and prices. Surprisingly, solar PV owners have an average optimal
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hedge share of only 21%. Solar PV likely results in a strong negative correlation between
prices and electricity consumption from the grid. As expected, the small sample of battery
storage owners also has a slightly below-average optimal hedge share of 51%.

Given their small sample sizes, the above results should be interpreted with caution for
solar PV and battery owners. I also stress that this paper does not establish a causal
relationship between technology ownership, optimal hedge shares, and bill volatility. The
above results merely provide first suggestive evidence that technology ownership influences
optimal hedge shares.

Table 4: Optimal hedge shares and bill volatility by low-carbon technology (LCT) own-
ership

Optimal hedge share Average coefficient of bill variation
Households Average SD16 Optimal Optimal vs.

LCT ownership (#) (%) (%) Unhedged hedge Unhedged (%)
All customers 2159 59 37 0.34 0.28 -18
Electric heating only 225 76 38 0.25 0.19 -23
Electric heating
+ smart thermostat 221 76 35 0.24 0.17 -28
EV only 411 68 43 0.26 0.18 -30
Solar only 101 21 29 0.50 0.49 -1
Battery only 28 51 41 0.42 0.42 -2
EV + solar 125 28 38 0.37 0.36 -6
EV + battery 32 68 40 0.33 0.26 -26
Solar + battery 84 17 25 0.65 0.66 1
EV + solar + battery 82 20 31 0.48 0.48 0

Table 4 also indicates that heterogeneity between households is not the only reason for
the enormous variation in optimal hedge shares. Even for a specific household, optimal
hedge shares differ strongly by time of day. On average, the hedge share for a specific
household has a standard deviation of 37% across time segments.16 These differences
between time segments are likely caused by significant variations in household-specific
daily consumption patterns. In some time segments, a household’s consumption pattern
might align with the aggregate load pattern and is, therefore, positively correlated with
prices. The same household’s consumption can correlate negatively with aggregate load
and prices in other time segments. The fine-grained hedge tariff with small time segments
accounts for these household-specific consumption patterns to provide adequate protection
from bill volatility.

16Average of the standard deviation of optimal hedge shares for specific households across time seg-
ments.
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6.2 Bill volatility

In this section, I discuss how effectively the optimal hedge protects customers from volatil-
ity of monthly electricity bills. Figure 4a compares the coefficients of variations of bills for
unhedged and optimally hedged tariffs across mean optimal hedge shares. The optimally
hedged tariff proves effective in reducing bill volatility. On average, the optimally hedged
tariff reduces the coefficient of variation of a household’s monthly bill by 18% compared to
an unhedged dynamic tariff. Hedging is even more effective for households who overhedge.
It reduces their coefficient of bill variation by 45% on average. On the other hand, hedging
hardly reduces bill volatility for households whose mean optimal hedge share is less than
50%. Naturally, hedging does not significantly affect households that only hedge a small
share of their baseline consumption. These findings are similar to the ones in Borenstein
(2007).

Figure 4: Distribution of mean optimal hedge shares by customer and coefficients of
variation of monthly bills by tariff type

(a) Unhedged tariff vs. optimally hedged
tariff
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(b) Comparison of various tariff types
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I also compare the effectiveness of the optimally hedged tariff to a more straightforward
tariff in which households always buy 100% of their baseline consumption forward. Figure
4b reveals that when always forced to buy a 100% hedge, households with a mean optimal
hedge share of less than 50% have a higher bill volatility than under the unhedged tariff.
Hence, a simple 100% hedge tariff is unsuitable for households with low mean optimal
hedge shares. On average, the 100% hedge tariff leads to a 15% higher coefficient of
variation of monthly bills than the optimally hedged tariff.

In addition, I compare the bill volatility of the previous tariffs to the one under a fixed
tariff. For customers with mean hedge shares above 100%, the optimally hedged tariff
results in lower bill volatility than the fixed tariff, as Figure 4b reveals. Borenstein (2007)
reports similar results in his paper. He argues that the hedged tariff protects households
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more effectively against price and quantity risks. The fixed tariff protects only against
price risks. Protection against quantity risk is essential for households who overhedge
since they face a positive correlation between prices and consumption.

Table 4 reveals that the optimal hedge reduces bill volatility most effectively for households
with electric vehicles and heating. For instance, optimal hedging reduces the bill volatility
for owners with only an EV by 30%. In contrast, hedging only slightly reduces bill
volatility for solar PV and battery owners with low hedge shares.

6.3 Price elasticity and risk aversion

Below, I analyze how risk aversion and demand elasticity affect hedge shares and bill
volatility. Figure 5 confirms that increasing substitution elasticity α increases the variation
in mean optimal hedge shares when exogenous quantity shocks remain constant.17 Raising
α leads to lower hedge shares when the correlation between prices and quantity shocks
is negative and higher hedge shares when it is positive (see Section 3.1). On average,
higher substitution elasticity decreases mean optimal hedge shares. Inelastic households
(α = 0.001) have an average mean optimal hedge share of 60% with a standard deviation
of 36%. Elastic households (α = 0.6) show an average mean optimal hedge share of 48%
with a standard deviation of 47%. Moreover, a large α increases the share of households
that overhedge or would even choose a negative hedge quantity if allowed.

Figure 5: Distribution of mean optimal hedge shares by customer and coefficients of
variation of monthly bills by tariff type for different substitution elasticity α

(a) α = 0.001
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(b) α = 0.1
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(c) α = 0.6
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Hedging reduces bill volatility more effectively when households are price-inelastic. For
price-inelastic households (α = 0.001), the optimal hedge lowers the coefficient of bill
volatility by 21% compared to the unhedged dynamic tariff. It does so by mitigating

17Since quantity shock ε̃t is a residual of the Marshallian demand function, it depends on α. To
calculate ε̃t in Section 4, I use α = 0.1 equal to the α used in the main specification above. Quantity
shocks should be considered exogenous shocks to demand. Therefore, when studying the effect of a change
in α on hedge shares, I hold quantity shocks constant to their level in the main specification.
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households’ exposure to high prices. At the same time, the hedge hardly reduces house-
holds’ price-response compared to the unhedged tariff when households are price-inelastic.

For very price-elastic households (α = 0.6), the optimal hedge even increases bill volatility
on average by 5% relative to the unhedged tariff. Price-elastic households respond less
strongly to prices when optimally hedged relative to being unhedged. Therefore, house-
holds consume more when prices are high on optimally hedged tariffs than on unhedged
ones. For some households, this leads to even more volatile bills on the optimally hedged
tariff than on the unhedged tariff. Households who decrease their hedge when α increases
experience on average a higher bill volatility on the optimally hedged tariff relative to the
unhedged one. Households who increase the hedge in response to higher price-elasticity
face lower average bill volatility when optimally hedged.

Moreover, optimally hedged households face an increase in bill volatility by 20% when
their price elasticity increases from α = 0.001 to α = 0.6. This reveals that when price-
elasticity rises the volatility of the optimally hedged bill does not only increase relative to
the unhedged bill, but also in absolute terms. In contrast, the bill volatility of unhedged
households declines by 13% when increasing α from 0.001 to 0.6.

Figure 6 shows that higher risk-aversion results in higher hedge shares. Hardly risk-averse
households (θ = 1.5) hedge far less than 100%. Few households still choose substantial
hedge shares as protection against a positive correlation between prices and quantity
shocks. When risk aversion increases, its impact on hedge shares diminishes. The distribu-
tion of mean optimal hedge shares for θ = 20 only moderately differs from the distribution
for θ = 5 in the main specification in Figure 4b. Similar to an increase in price-elasticity,
an increase in risk-aversion makes hedging less effective in lowering bill volatility relative
to the unhedged tariff. Risk-aversion leads to higher hedge shares. These higher hedge
shares lower households to exposure spot prices and, therefore, allow households to con-
sume more when prices are high. For high risk aversion (θ = 20), this leads on average
even to a slightly higher bill volatility on the optimally hedged tariff compared to the
unhedged tariff.
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Figure 6: Distribution of mean optimal hedge shares by customer and coefficients of
variation of monthly bills by tariff type for different levels of risk aversion θ

(a) θ = 1.5
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(b) θ = 3
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(c) θ = 20
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6.4 Price premia

Figure 7 shows the price premia households are willing to pay to receive the forward
hedge by mean optimal hedge share. The negative price premium implies that the hedge
increases households’ welfare. However, the welfare effect of the forward hedge is small.
Compared to an unhedged dynamic tariff, the forward hedge reduces the mean electricity
price that makes households indifferent between the unhedged tariff and the optimally
hedged tariff by merely 0.3% (for the main specification with α = 0.1). The welfare benefit
from hedging is most significant for households who hedge close to 100%. The hedge adds
the most value for these households by stabilizing the marginal utility of income while
still exposing households sufficiently to spot prices to keep demand price-elastic.

Figure 7: Distribution of mean optimal hedge shares by customer and forward hedge price
premium gh for different α

(a) α = 0.001
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(b) α = 0.1
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(c) α = 0.6
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One reason for the small welfare effects of hedging might be electricity’s small share in
household expenditure. In the above simulations, I assumed that households spend on
average only 2% of their income on electricity which is roughly the case in the UK (UK
ONS, 2021). Such a small expenditure share implies that a change in electricity prices
will have merely a small effect on households’ marginal utility of income. When the price

26



elasticity of the marginal utility is already tiny, the hedge can only add little value by
stabilizing it.

However, electricity’s share in household expenditure will likely increase in the upcoming
decades. Households will start using electricity for heating, cooling, and driving cars. To
assess how an increasing expenditure share of electricity affects the welfare benefits of
hedging, I run the above simulation assuming that households spend on average 10% of
their income on electricity. Figure 21 in Appendix F reveals that a higher expenditure
share of electricity only slightly increases the welfare benefits from hedging. On average,
the welfare benefit translates to a 1.6% reduction in the mean electricity price compared
to a 0.3% reduction when electricity’s expenditure share remains at 2%.

Figure 8: Distribution of mean optimal hedge shares by customer and forward hedge price
premium gh by tariff type for different θ
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(c) θ = 20
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Figure 7 also highlights that increasing substitution elasticity α further diminishes the
welfare benefit from hedging. The higher α, the smaller the share of households that
hedge close to 100%. Households who hedge roughly 100% benefit most from hedging.
When demand is elastic (α = 0.6), the hedge only achieves an average welfare benefit
of 0.05%. Meanwhile, Figure 8 depicts that an increase in risk aversion has a more
substantial effect on the welfare gain from hedging. For very small levels of risk aversion
(θ = 1.5), the welfare gain from hedging amounts to only 0.04% expressed as a reduction
in mean electricity prices. If risk aversion is large (θ = 20) hedging leads to a larger but
still surprisingly low 1.2% welfare gain.

Figure 9 reveals that dynamic pricing has a much stronger effect on household welfare
than forward hedging. The figure shows the price premia for unhedged dynamic tariffs
gp and the optimally hedged dynamic tariffs gf . gf hardly differs from gp since the
welfare effect of the forward hedge gh = gf − gp is negligible relative to gp. Compared to
a fixed tariff, the unhedged dynamic tariff leads to an average welfare gain equivalent to
a 1.4% reduction in average electricity prices for the main specification (α = 0.1). 58% of
households achieve higher welfare on the unhedged dynamic tariff than on the fixed tariff.
Households that benefit most from dynamic pricing also choose low hedge shares since
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they have a negative correlation between electricity prices and their desire to consume
electricity. Households with a positive correlation are better off on a fixed tariff.

As expected, increasing demand elasticity makes unhedged dynamic tariffs more attrac-
tive. When α = 0.6, 85% of households prefer dynamic pricing over a fixed tariff. The
average welfare gain from dynamic pricing rises to 4%.

Figure 9: Distribution of mean optimal hedge shares by customer and price premia gp

and gf for different α

(a) α = 0.001
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(b) α = 0.1
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(c) α = 0.6
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6.5 Scarcity price event

There are two additional reasons why hedging results in low welfare gains: First, house-
holds in my sample are not fully exposed to day-ahead electricity prices but are protected
via a price cap. Since the price cap already protects households from high prices, the
hedge can only add small additional value. Second, households do not experience an ex-
treme scarcity event like the Texas winter storm during the sample period. The benefit
from hedging is larger when households experience worst-case events with extremely high
prices.

Figure 10b depicts how the performance of the optimal forward hedge changes when
removing the price cap and exposing households to fully dynamic prices. Removing the
cap has a negligible effect on the distribution of mean optimal hedge shares and bill
volatility. Likewise, the welfare benefits from hedging only marginally increase after
removing the cap (see Figure 11b). The price cap has only tiny effects during my sample
period since dynamic prices rarely exceed the cap in only 3% of time intervals. At the
same time, price caps are suboptimal since they lower the incentive to respond to high
scarcity prices (Appendix D provides statistics on dynamic prices after removing the price
cap).
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Figure 10: Distribution of mean optimal hedge shares by customer and coefficients of
variation of monthly bills by tariff type for different levels of price protection

(a) Baseline results with price
cap
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(b) Results without price cap
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(c) Results without price cap
and scarcity event
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Figure 11: Distribution of average optimal hedge shares by customer and forward hedge
price premium gh by tariff type for different levels of price protection

(a) Baseline results with price
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(b) Results without price cap
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(c) Results without price cap
and scarcity event
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In Figure 10c, I study how a scarcity event like the Texas winter storm with extremely
high prices over multiple days affects hedging and bill volatility. To do so, I run the
above simulations while removing the price cap and simulating a four-day scarcity event:
I manually choose a very high dynamic price of 3.5£/kWh, which is ten times the current
price cap. I set the price for all 192 consecutive time intervals from 12 to 15 January
2021.

Figure 10c highlights that mean optimal hedge shares moderately increase to 63% on
average when households experience a scarcity event. The scarcity event mainly induces
households with initially low hedge shares to hedge more. When households face a scarcity
event, the hedge tariff becomes even more effective in reducing bill volatility. The optimal
hedge reduces households coefficients of bill volatility on average by 48% relative to the
unhedged tariff with a scarcity event.

Overall, the scarcity event only slightly increases bill volatility on an optimally hedged
tariff, as a comparison of Figures 10a and 10c reveals. The average coefficient of variation
of bills is 18% higher for the optimally hedged tariff with a scarcity event compared to the

29



optimally hedged tariff with a price cap. In contrast, bill volatility on an unhedged tariff
increases by 108% for unhedged tariffs when moving from an unhedged price-capped tariff
to an unhedged, fully dynamic tariff with a scarcity event. Surprisingly, the optimally
hedged tariff only results in slightly higher bill volatility than the fixed tariff, even if a
scarcity event occurs.

Figure 11c points out that the welfare benefits from hedging are substantially larger
with a scarcity event. The average welfare benefit with a scarcity event translates to
a 19% reduction in mean electricity prices compared to a 0.3% welfare benefit for the
price-capped tariff. This illustrates that welfare benefits from hedging might grow in the
future since households on dynamic tariffs will likely face more frequent and more extreme
scarcity prices.

7 Conclusion

Dynamic electricity prices have an enormous potential to make power markets more ef-
ficient since they help align fluctuating electricity demand and supply. However, they
expose households to very high electricity prices when supply is scarce. In this paper,
I study how to augment dynamic electricity prices with a forward hedge. The forward
hedge should protect households from high prices while incentivizing them to adjust their
consumption to prices elastically.

Using a utility maximization model, I simulate optimal forward hedge shares for a sample
of 2,159 UK households exposed to dynamic prices. My main contribution is that I study
the relation between optimal hedge shares and households’ price elasticity of demand
when they face uncertainty about prices and quantity shocks.

The simulations suggest that the households in my sample should hedge on average 59%
of their baseline consumption. Optimal hedge shares differ strongly among households
and by time of day. These differences are due to significant variations in the correlation
between prices and the desire to consume electricity. Ownership of low-carbon technolo-
gies like electric vehicles, solar PV, battery storage, and electric heating is correlated with
optimal hedge shares and might contribute to their considerable variation.

The central insight of this paper is that an exogenous increase in price elasticity can in-
crease or decrease hedge shares. Higher price elasticity increases hedge shares when prices
and the desire to consume electricity are positively correlated. In this case, the household
increases the hedge to ensure that it can maintain an acceptable level of electricity con-
sumption when both prices and its desire to consume are high. In contrast, higher price
elasticity reduces hedge shares when the correlation between prices and quantity shocks
is negative. Households reduce their hedge shares to raise their exposure to spot prices
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when spot prices are negatively correlated with their desire to consume.

Optimal forward hedging effectively reduces the volatility of monthly electricity bills by
an average of 18%. The reduction in bill volatility is more significant when households
face a positive correlation between prices and quantity shocks. The optimal forward hedge
can even achieve lower bill volatility than a fixed tariff.

However, despite reducing bill volatility, the welfare gains from optimal forward hedging
are minimal. In the main specification, these welfare gains amount to just a 0.3% de-
crease in mean dynamic electricity prices. Welfare gains from hedging remain small for
households with low price-elasticity, high risk-aversion, and even for households with a
much larger share of electricity in overall expenditure.

Welfare gains from hedging are much higher and equivalent to a 19% reduction in mean
electricity prices when households face a Texas-style scarcity event with extremely high
prices. Hedging might become more valuable in the future when extreme weather and
price events will occur more often. However, the given model might not fully capture the
benefits of protecting households from extreme worst-case events. Real-world households
might care more about avoiding extremely high worst-case bills than about maximizing
expected consumption utility or minimizing average bill volatility. Further research should
therefore analyze how to design optimal forward hedge tariffs that effectively protect
against worst-case outcomes.

In addition, the practical implementation of forward hedging requires further study. Most
importantly, it needs to be tested whether domestic consumers understand how forward
hedging works and which incentives it creates. The experience with the German gas and
electricity price breaks suggests that a widespread adoption of forward hedging would
require large efforts to educate consumers. Future research also needs to examine the
optimal length of the hedge time segments. Moreover, it is crucial to gain a better un-
derstanding how to determine households’ baseline consumption levels, especially in the
absence of historical price-consumption data. The need to determine a baseline consump-
tion level might also reduce competition in retail power markets. Incumbent suppliers
have an advantage in estimating baseline consumption based on historical data and cus-
tomer characteristics. Therefore, regulators should allow households to share their histor-
ical price and consumption data with different retailers to ensure all suppliers can offer
equally attractive hedged tariffs.

Despite all these challenges, forward contracts will likely play a vital role as a supplement
to dynamic electricity prices in the future. Dynamic electricity pricing will become even
more relevant for making electricity markets efficient in a world with primarily intermit-
tent electricity supply. However, consumers and politicians have been hesitant to widely
adopt dynamic prices up until now. One of the main reasons for this reluctance is that
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dynamic electricity prices can make households vulnerable to extremely high prices. For-
ward hedging is a powerful tool to overcome these concerns as it partly shields households
from high prices while preserving the incentive to be price-responsive.
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Appendices

A Derivation of the optimal hedge share h∗

In this section, I derive the expressions for the optimal hedge share h∗ as given in equations
(5) and (8). The derivations follow Gilbert (1985) and Cowan (2004). The first-order
condition of the optimization problem in the first stage in equation (3) can be rewritten
as (Losq, 1982):

E[Vb(p̃−p)] = E[Vb(f −p)] (A.1)

One can approximate Vb by a first-order Taylor approximation of Vb about (p,ε).

Vb ≈ V b +V bp̃(p̃−p)+V bbh(p̃−p)+V bε̃(ε̃− ε) (A.2)

Plugging equation (A.2) into (A.1) leads to:

V bp̃E[(p̃−p)2]+V bbhE[(p̃−p)2]+V bε̃E[(ε̃− ε)(p̃−p)] = V b(f −p)

where E[(ε̃− ε)] = 0 and E[(p̃−p)] = 0 because E[p̃] = p and E[ε̃] = ε.

With σ2
p̃ = E[(p̃ − p)2] and σp̃ε̃ = E[(ε̃ − ε)(p̃ − p)] one can solve for the absolute optimal

hedge quantity h∗:

h∗ = −
V bp̃

V bb
− V bε̃

V bb

σp̃ε̃

σ2
p̃

+ V b

V bb

(f −p)
σ2

p̃

(A.3)

As discussed in Section 3.1, the last term of the above equation equals zero since I assume
that households do not hedge for speculative reasons, i.e., households believe that the
forward hedge price f equals the mean dynamic price p.

In the next step, I aim to express the optimal hedge quantity h∗ in equation (A.3) as
a share of the baseline consumption level x̂∗ = x∗(p,b,ε). At baseline, Roy’s identity is
given as x̂∗ = −V p̃

V b
.18 Following Turnovsky et al. (1980) and Gilbert (1985), one can

differentiate Roy’s identity at baseline with respect to b, which leads to

V bp̃ = −V bb −V b
∂x̂∗

∂b

V bp̃ = (θ −η)x̂∗ V b

b
(A.4)

18In general, Roy’s identity with a forward hedge is given as x∗ −h = −Vp̃

Vb
(Gilbert, 1985).
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η = ∂x̂∗

∂b
b

x̂∗ is the income elasticity of electricity demand, and θ = −V bb

V b
b is the coefficient of

relative risk aversion at baseline consumption. Inserting equation (A.4) into (A.3) gives

h∗ = (1− η

θ
)x̂∗ − V bε̃

V bb

σp̃ε̃

σ2
p̃

(A.5)

For the simulation of optimal hedge shares, I assume that the following CES indirect
utility function can describe households’ consumption decisions.

V (p̃, b, ε̃,f,h) = 1
1− θ

[b+(p̃−f)h∗]1−θ(ε̃p̃1−α +1)
1−θ
α−1 (A.6)

Applying Roy’s identity, the Marshallian demand functions are given as

x∗ = [b+(p̃−f)h∗]ε̃p̃−α

(ε̃p̃1−α +1)
(A.7)

y∗ = [b+(p̃−f)h∗]
(ε̃p̃1−α +1)

The first derivative of V = V (p̃, b, ε̃,f,h) with respect to b is

Vb = [b+(p̃−f)h∗]−θ(ε̃p̃1−α +1)
1−θ
α−1 (A.8)

Taking the derivative of Vb with respect to b and ε̃, respectively, gives

Vbb = −θ[b+(p̃−f)h∗]−θ−1(ε̃p̃1−α +1)
1−θ
α−1 (A.9)

Vbε̃ = [b+(p̃−f)h∗]−θ 1− θ

α −1
(ε̃p̃1−α +1)

1−θ
α−1 −1p̃1−α (A.10)

Evaluating equations (A.9) and (A.10) at baseline (with p̃ = p = f and ε̃ = ε) leads to

V bε̃

V bb
=

1− 1
θ

 1
α −1

x̂∗ p

ε
(A.11)

Moreover, from equation (A.7) one can derive the income elasticity of demand at baseline
η = ∂x̂∗

∂b
b

x̂∗ = 1. The optimal hedge equation (A.5) can then be rewritten as

h∗ =

1− 1
θ

x̂∗ +

1− 1
θ

 1
1−α

x̂∗ p

ε

σp̃ε̃

σ2
p̃

(A.12)

h∗

x̂∗ =

1− 1
θ

 ∗

1+ 1
1−α

ρ
cv(ε̃)
cv(p̃)


which equals the optimal hedge share in equation (8). σp̃ and σε̃ denote the standard
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deviations of p̃ and ε̃. Moreover, cv(p̃) = σp̃

p and cv(ε̃) = σε̃
ε are the coefficients of variations

of p̃ and ε̃, respectively.
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B Derivation of the price premia

In this appendix, I derive the expressions for the price premia gp and gf as defined in
equations (12) and (14), respectively.

Derivation of gp:

gp equals the percentage increase in fixed price p that makes the household indifferent
in expectation between the fixed tariff and the unhedged dynamic tariff with stochastic
price p̃ (Gilbert, 1985).

E[V ((1+gp)p,b, ε̃)] = E[V (p̃, b, ε̃)] (B.1)

On the unhedged dynamic tariff and the fixed tariff, the household does not hedge, i.e.,
h = 0. A first-order Taylor approximation of the LHS of equation (B.1) yields

V ((1+gp)p,b, ε̃) ≈ V +V p̃ ∗E[(1+gp)p−p]

≈ V +V p̃ ∗gpp

A second-order Taylor approximation of the RHS of equation (B.1) about (p,ε) yields

V (p̃, b, ε̃) ≈ V +V p̃E[p̃−p]+V ε̃E[ε̃− ε]

+ 1
2

V p̃p̃E[(p̃−p)2]+ 1
2

V ε̃ε̃E[(ε̃− ε)2]

+V ε̃p̃E[(ε̃− ε)(p̃−p)]

≈ V + 1
2

(V p̃p̃σ2
p̃ +V ε̃ε̃σ

2
ε̃)+V ε̃p̃σε̃p̃

The term V ε̃ε̃ above can be neglected for comparing the relative welfare between the two
price regimes. V ε̃ε̃ is not affected when moving from fixed to dynamic prices. Therefore,
it does not affect the relative welfare difference between the fixed and dynamic prices
measured by gp (Gilbert, 1985). Inserting the Taylor approximations into equation (B.1)
and solving for gp leads to

gp = 1
2

V p̃p̃

V p̃p
σ2

p̃ + V ε̃p̃

V p̃p
σp̃ε̃ (B.2)

Using the indirect CES utility function (10) for unhedged households (h∗ = 0), the relevant
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derivatives can be derived as

Vp̃ = 1
α −1

b1−θ(ε̃p̃1−α +1)
1−θ
α−1 −1(1−α)ε̃p̃−α

= −Vbx
∗ (B.3)

Vε̃ = 1
α −1

b1−θ(ε̃p̃1−α +1)
1−θ
α−1 −1p̃(1−α)

Vε̃p̃ = −b1−θ(ε̃p̃1−α +1)
1−θ
α−1 −1p̃−α[ βu

1−α
+1− ŝ]

= Vp̃

ε̃
[ βu

1−α
+1− ŝ] (B.4)

Moreover, Turnovsky et al. (1980) and Cowan (2004) show that differentiating Roy’s
identity Vp̃ = −x̂∗Vb w.r.t. p̃ results in

Vp̃p̃ = −∂x̂∗

∂p̃
Vb − x̂∗Vbp̃ (B.5)

Inserting Roy’s identity at baseline Vb = −Vp̃

x̃∗ and equation (A.4) into the above equation
(B.5) gives the absolute value of Turnovsky et al.’s (1980) coefficient of relative price risk
aversion

V p̃p̃

V p̃
p = γ̂ + ŝ(θ −η) (B.6)

Plugging equations (B.3), (B.4), and (B.6) into equation (B.2) and evaluating them at
baseline leads to

gp = 1
2

V p̃p̃

V p̃
p

σ2
p̃

p2 + σp̃

p

σε̃

ε
σp̃ε̃[

βu

1−α
+1− ŝ]

= 1
2

[γ̂ +βu]cv(p̃)2 +ρcv(p̃)cv(ε̃)[ βu

1−α
+1− ŝ]

The above equals the price premium for the unhedged dynamic tariff in equation (12).
βu = ∂V b

∂p̃
p

V b
= (θ − 1)s is the price elasticity of the marginal utility of income at baseline

for unhedged households.

Derivation of gf :

gf denotes the percentage increase in fixed price p that makes the household indifferent
in expectation between the fixed tariff and the optimally hedged dynamic tariff (Gilbert,
1985).

E[V ((1+gf )p,b, ε̃)] = E[V (p̃, b+(p−f)h∗, ε̃)] (B.7)
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A second-order Taylor approximation of the RHS of equation (B.7) about (p,ε) yields

V (p̃, b, ε̃) ≈ V +V p̃E[p̃−p]+V bE[p̃−p]h∗ +V ε̃E[ε̃− ε]

+ 1
2

V p̃p̃E[(p̃−p)2]+ 1
2

V bp̃E[(p̃−p)2]h∗ + 1
2

V ε̃ε̃E[(ε̃− ε)2]

+V ε̃p̃E[(p̃−p)∗ (ε̃− ε)]

≈ V + 1
2

(V p̃p̃σ2
p̃ +V ε̃ε̃σ

2
ε̃)+V ε̃p̃σp̃ε̃ + 1

2
V bp̃h∗σ2

p̃

Following analogous steps as for gp, gf is given as

gf = 1
2

V p̃p̃

V p̃p
σ2

p̃ + V ε̃p̃

V p̃p
σp̃ε̃ + 1

2
V bp̃

V p̃p
h∗σ2

p̃ (B.8)

The first two terms of the above expression equal the ones for gp in equation (B.2).
However, when optimally hedged, Roy’s identity changes to (Gilbert, 1985)

Vp̃ = −Vb(x∗ −h∗) (B.9)

Differentiating expression (B.9) with respect to b yields

Vbp̃ = Vp̃b = −Vbb(x∗ −h∗)−Vb
∂x∗

∂b

= −Vbbx
∗ −V bb

V b

V bbb

∂x∗

∂b

b

x∗ x∗ +Vbbh
∗

= −Vbb(
θ −1

θ
)x∗ +Vbbh

∗

Evaluating the above equation at baseline with η = 1 and using the optimal hedge quantity
h∗ = (1− 1

θ )x̂∗
(

1+ 1
1−αρ cv(ε̃)

cv(p̃)

)
gives

V bp̃ = −Vbb(
θ −1

θ
)x̂∗ +Vbb(

θ −1
θ

)x̂∗ +Vbb(
θ −1

θ
)x̂∗

( 1
1−α

ρ
cv(ε̃)
cv(p̃)

)
(B.10)

= − βu

1−α

V b

p
ρ

cv(ε̃)
cv(p̃)

(B.11)

where βu = V bp̃
p
Vb

= (θ − 1)s is the price-elasticity of marginal utility of income for the
unhedged household (when h∗ = 0). As shown above, one can derive an expression for
Vp̃p̃ from Roy’s identity in equation (B.9) as

Vp̃p̃ = −x∗
p̃Vb −Vbp̃(x∗ −h∗)

= −γ
x∗

p
Vb +Vbp̃

Vp̃

Vb
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Evaluating the above expression at baseline and using (B.11), one gets

V p̃p̃ = γ
V p̃

p
− βu

1−α
ρ

cv(ε̃)
cv(p̃)

V p̃

p
(B.12)

where I used that at baseline, Roy’s identity is x̂∗ = −V p̃

V b
. Hence,

V p̃p̃

V p̃p
σ2

p̃ = γcv(p̃)2 − βu

1−α
ρcv(p̃)cv(ε̃) (B.13)

From equation (B.11) it also follows that

V bp̃

V p̃p
h∗σ2

p̃ = − βu

1−α

V b

V p̃
ρcv(ε̃)cv(p̃)h∗

= βu

1−α
ρcv(ε̃)cv(p̃)h∗

x̂∗ (B.14)

Moreover, one also needs to derive expressions for V ε̃p̃ when optimally hedged. Following
the same steps as for gp above, one can show that for the optimally hedged tariff, V ε̃p̃ is
equivalent to equations (B.4) for the unhedged dynamic tariff when evaluated at baseline.
Therefore, one can plug equations (B.4), (B.13), and (B.14) into equation (B.8) to obtain

gf = 1
2

γcv(p̃)2 +ρcv(p̃)cv(ε̃)[ βu

1−α
+1− ŝ]

− 1
2

βu

1−α
ρcv(p̃)cv(ε̃)+ 1

2
∗ βu

1−α
ρcv(p̃)cv(ε̃)h∗

x̂∗

= 1
2

[γ̂ +βu]cv(p̃)2 +ρcv(p̃)cv(ε̃)[ βu

1−α
+1− ŝ]︸ ︷︷ ︸

gp

−1
2

βucv(p̃)2

− 1
2

βu

1−α
ρcv(p̃)cv(ε̃)

1− h∗

x̂∗


= gp − 1

2
βucv(p̃)2 − 1

2
βu

1−α
ρcv(p̃)cv(ε̃)

1− h∗

x̂∗


This expression equals the price premium for the optimally hedged tariff in equation (14).
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C Robustness checks for different hedge time seg-
ments

In this appendix, I analyze the effect of choosing different hedge time segments on optimal
hedge shares and bill volatility. As explained in Section 4, I define a hedge time segment for
every half hour per day separately for weekdays and weekends in my main specification.
For instance, 8-8:30 am on weekdays is a time segment. 8-8:30 am on weekends is a
different time segment. In my main specification, I end up with 96 distinct time segments
for all 48 half-hourly periods on weekends and weekdays, respectively.

Table 5: Description of different hedge time segments

Time segment Number of segments
definition Description per customer
Season and half hour customer-season-weekend-half hour 384
Main specification customer-weekend-half hour 96
Season and time of day customer-season-weekend-time of day 32
Time of day customer-weekend-time of day 8
Season customer-season-weekend 8
None customer 1

I can define even more fine-grained time segments by differentiating the main specification
by season as shown in Table 5.19 For instance, the specification “Season and half an hour”
defines 8-8:30 am on weekdays in February as a time segment and 8-8:30 am on weekdays
in June as another segment. As Table 5 highlights this leads to 384 (4*96) segments per
customer.

The specification “Season and time of day” leads to less fine-grained time segments. This
specification differentiates by season, but groups periods in broader time of day cate-
gories.20 For instance, 8-8:30 am on weekdays in February would fall in the winter-
morning-weekday time segment. This specification results in 32 different time segments.

The specification “Time of day” only differentiates between time of days and week-
day/weekends. Thus, 8-8:30 am on weekdays in February would be the same time segment
as 8-8:30 am on weekdays in June.

In contrast “Season” differentiates by season and weekday/weekends but not by time of
day. In this specification, 8-8:30 am on weekdays in February is the same segment as
20-20:30 am on weekdays in March but a different segment than 8-8:30 am on weekdays

19I define “winter” as January to March, “spring” as April to June, “summer” as July to September,
and “autumn” as October to December.

20I define “night” from midnight to 6:00, “morning” from 6:00 to 12:00, “afternoon” from noon to
18:00, and evening from 18:00 to 24:00.
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in June. The specifications “Time of day” and “Season” lead to 8 segments per customer,
respectively.

Finally, the specification “None” is the less fine-grained as it counts all time intervals into
the same time segment. This assumes that customers buy the same quantity forward for
every time interval.

Figure 12: Distribution of optimal hedge shares across all customers by hedge time seg-
ment specification
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(b) Main specification
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(c) Season and time of day
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(d) Time of day
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(e) Season
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(f) None
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Figure 12 highlights that the distribution of optimal hedge shares across all customers
is very similar for the different hedge time segment specifications. The average optimal
hedge share ranges between 52% (“None”) and 70% (“Season and time of day”). The less
fine-grained the hedge specification, the smaller is the share of very large hedge shares
(greater 150%) and the larger is the share of hedge shares that I set to zero.

Figure 13 shows the coefficients of variations of monthly electricity bills for unhedged and
optimally hedged tariffs across mean optimal hedge shares per households for the different
hedge time segment specifications. This figure reveals an even clearer trend in mean
optimal hedge ratios. The less fine-grained the time segments, the more dispersed are
the mean optimal hedge ratios between customers. Without any time segments (“None”)
more than 40% of households does not hedge at all while a substantial share of households
chooses a mean optimal hedge share larger than 100%.

As expected, less-fine grained time segments are less effective in reducing bill volatility.
Without any time-segments (“None”) the optimally hedged tariff tends to reduce the
coefficient of variation of monthly bills only by 3% relative to the unhedged tariff. The
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fine-grained main specification leads to a much larger reduction in bill volatility of 19%
when moving from the unhedged to the optimally hedged tariff. Interestingly, the even
more fine-grained specification “Season and half hour” achieves only a smaller reduction
in bill volatility of 14%. Hence, while an increase in granularity of time segments seems
to overall reduce bill volatility, too granular specification seem to raise volatility.

Figure 13: Distribution of average optimal hedge shares by customer and coefficients of
variation of monthly bills by hedge time segments
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(b) Main specification
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(c) Season and time of day
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(d) Time of day
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(e) Season
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(f) None
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Unhedged Optimal hedge
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D Dynamic prices with removed price cap

This appendix explains how Octopus Energy calculates dynamic prices and provides de-
scriptive statistics for day-ahead and dynamic prices. Dynamic prices are tied to day-
ahead electricity prices. Figure 14 shows the distribution of the half-hourly electricity
day-ahead prices for the Great Britain (GB) price zone during the sample period ob-
tained from EPEX SPOT (2023). Day-ahead prices are relatively low and rarely exceed
20 p/kWh. However, while overall volatility is small, there are a few significant price spike
hours in which day-ahead prices are very high. Figure 15 reveals that day-ahead prices
remain on average roughly stable over time during the study period.

Figure 14: Relative distribution of day-
ahead electricity prices in the GB price
zone (EPEX SPOT, 2023)
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Figure 15: Half-hourly day-ahead elec-
tricity prices in the Great Britain price
zone (EPEX SPOT, 2023)
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Dynamic prices are based on day-ahead prices. In addition, they contain distribution
charges and a peak-time premium. For every half-hourly interval, the day-ahead price
is multiplied by a distribution charge multiplier that ranges from 2 to 2.4, depending
on the grid supply area the household is located in. Between 4 pm and 7 pm, a peak-
time premium is added that ranges from 11p to 14p, depending on the grid supply area.
Afterward, VAT is added. The resulting price is the dynamic price for the respective
half-hourly interval unless it exceeds the price cap of 35 p/kWh. If the calculated price
exceeds the price cap, the dynamic price is set to 35 p/kWh (Octopus Energy, 2019).

For 0.3 percent of the half-hourly intervals, households received weakly negative prices
due to excess supply in the day-ahead market. I exclude these rare weakly negative price
events since the model in Section 3 only applies to positive prices.
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Figure 16: Relative distribution of dy-
namic prices with price cap
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Figure 17: Relative distribution of dy-
namic prices without price cap
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Figure 16 shows the distribution of dynamic prices that households on dynamic tariff
actually paid with a price cap for the first grid supply area.21 The graph reveals that
dynamic prices are quite volatile on a relatively low level below the price cap. Figure 17
shows the distribution of dynamic prices when removing the price cap. While dynamic
prices only exceed the price cap in 3% of the half-hourly time intervals, the uncapped
distribution has a very long tail that consists of a few rare very high prices.

Figure 18: Relative distribution of dynamic prices without price cap and with scarcity
event
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Moreover, Figure 18 reveals that the distribution of dynamic prices hardly changes when
households are exposed to the scarcity event. As explained in Section 6.5, I simulate
a four-day scarcity event by removing the price cap and manually setting the dynamic
price to 350p/kWh for all 192 consecutive time intervals from 12 to 15 January 2021. I
choose the scarcity price to equal ten times the price cap. These simulated scarcity prices
account for only 1% of half-hourly dynamic prices.

Table 6 compares the distribution of the dynamic prices with and without a price cap
21Dynamic prices for other grid supply areas slightly differ due to minor differences in grid charges

and peak-time premia.
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and with a scarcity event. The table highlights that the removal of the price cap and
the scarcity event have only small effects on the mean of the dynamic prices, but a much
larger effect on their standard deviation (SD) due to much higher maximum values.

Table 6: Distribution of different dynamic prices and fixed prices (pence/kWh)

Tariff type mean SD min 1% 10% 25% 50% 75% 90% 99% max
Dynamic capped 15.4 7.4 0.0 3.1 8.1 10.4 13.3 18.7 27.3 35.0 35.0
Dynamic removed cap 15.8 11.4 0.0 3.1 8.1 10.3 13.1 18.5 27.0 43.1 386.4
Dynamic scarcity event 20.1 40.0 0.0 3.1 8.1 10.3 13.1 18.7 27.9 350.0 350.0
Fixed 15.1 0.1 10.5 19.9
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E Additional results for different shares of electricity
in household expenditure

This appendix tests the robustness of the optimal hedge shares to varying the assumption
with respect to the average share of electricity sk in household expenditure in hedge time
segment k. In the main specification, I assume that each household spends on average
sk = 2% of its household budget on electricity in every hedge time segment (see discussion
Section 4). In this section, I test how the optimal hedge shares and bill volatility change
when changing sk to 1%, 5%, and 10%, respectively.

Figure 19: Distribution of average optimal hedge shares by customer and coefficients of
variation of monthly bills by tariff type for different average segment budget shares sk

(a) sk = 1%
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(b) sk = 2%
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(c) sk = 5%
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(d) sk = 10%
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Unhedged Optimal hedge

Figure 19 highlights that the mean optimal hedge shares hardly changes when the average
time segment budget share sk rises. For sk = 1%, households’ mean optimal hedge share
is on average 59% compared to 57% when sk = 10%. However, the variance in mean
optimal hedge shares between households slightly rises.

The figure also shows that the bill volatility for households on the optimally hedged tariff
increases relative to the unhedged tariff when sk increases. For small segment budget
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shares of sk = 1%, the optimal hedged tariff achieves on average a 19% lower coefficient
of variation of monthly electricity bills than the unhedged tariff compared to 5% when
sk = 10%.

On the other hand, Figure 20 points out that an increase in budget share raises the
welfare benefits from hedging. For small segment budget shares (sk = 1%), the average
welfare benefit achieved by the forward hedge only amounts to a 0.13% decrease in mean
electricity prices. For large budget shares (sk = 10%), the welfare benefits climbs to 1.6%.

Figure 20: Distribution of average optimal hedge shares by customer and hedge price
premium gh for different average segment budget shares sk

(a) sk = 1%
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(b) sk = 2%
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(c) sk = 5%
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(d) sk = 10%
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Price premium for the forward hedge (gh)
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F Additional results for the price premia when in-
creasing electricity’s expenditure share

Figure 21 shows the price premium households are willing to pay for the forward hedge
when electricity’s expenditure share increases from sk = 2% to sk = 10%.

The graph indicates that increasing the portion of expenditure on electricity to sk = 10%
only has a marginal impact on enhancing the welfare advantages of hedging. For the
main specification with α = 0.1, the larger expenditure share of sk = 10% leads to a
welfare improvement that corresponds to a decrease of 1.6% in the average electricity
price, as opposed to a 0.3% decrease observed when the expenditure share on electricity
remains at 2%.

Figure 21: Distribution of average optimal hedge shares by customer and hedge price
premium gh with an expenditure share of electricity of 10%

(a) α = 0.001
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(b) α = 0.1
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(c) α = 0.6
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