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Abstract

This paper studies welfare maximizing information structures in a public good setting.
In large groups less information is provided. In the limit, no information is provided but
the information is efficient as by the law of large numbers no information is needed to take
the efficient decision. This implies that the free rider problem is most severe not for large
but for intermediate group sizes.
JEL code: D82
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1. Introduction

Free riding has been identified as a main obstacle to efficiency in the decision of whether
to provide a public good or not. That is, agents that derive a high benefit from the public
good are tempted to contribute very little in the hope that the public good will be provided
anyway due to more generous contributions of others. Conventional wisdom suggests that
this problem is more severe if the population is large as the contribution of any individual is
less likely to be pivotal. Indeed even under optimal contribution mechanisms the free riding
problem can become so severe that the public good is never provided if the number of agents
is large.1

This paper considers not only the optimal mechanism but also the optimal information
structure. Which information is revealed before the decision about a public project is taken
will determine how precisely agents can judge their own expected benefit. Providing detailed
information allows agents to precisely know their own benefit and has therefore the advantage
that – in principle – it is possible to determine whether the sum of benefits is higher than the
costs, i.e. whether a provision of the public good is efficient or not. The downside of precise
information are increased “information rents” because each agent’s benefit from the project is
eventually privately known by the agent. More precise information lead therefore to higher
information rents and those imply less efficient decisions.

This paper makes the point that for large populations of agents with independent benefits
from the project, the free rider problem does not exist if the use of information design is
possible. The reason is that – by the law of large numbers – the aggregate benefit of the project

∗University of Cologne, Faculty of Management, Economics and Social Sciences, Albertus Magnus Platz,
50923 Köln, Germany; Tilec and C-SEB; email: c.schottmueller@uni-koeln.de.

1I will prove a version of this result in lemma 1.
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can be estimated relatively precisely if the number of agents is large even if no information is
provided, i.e. the average benefit will equal the mean of the prior distribution of individual
benefits. Consequently, providing no information and therefore reducing information rents to
0 is (approximately) optimal if the population is large and allows to take the efficient decision.

It follows immediately that the free riding problem is most pronounced not for large but
for intermediate group sizes: for very small group sizes free riding is only a minor problem
even without information design and for large group sizes information design eliminates the
free riding problem.

This paper establishes the above mentioned results and also characterizes welfare maxi-
mizing, symmetric information structures in a public good model.2 In particular, it is shown
that optimal information structures are monotone partitions of the type space and therefore
have finite support if the type space is finite. To illustrate the results, an explicit solution is
given for the case of a binary type space.

The related literature on information design has recently been surveyed in Bergemann and
Morris (2019). Methodologically closest are Bergemann and Pesendorfer (2007) who derive the
revenue maximizing information structure in a model of optimal auctions and Schottmüller
(2022) who analyzes the welfare maximizing information structure in a model of bilateral
trade. The optimal information structure is a monotone partition of the type space in both
papers and similar methods of proof are used to derive this result. The public good model
without information design is, of course, well known and many textbooks cover the derivation
of the optimal mechanism in this setup; see Börgers (2015, ch. 3.3) for a textbook exposition
and d’Aspremont and Gérard-Varet (1979) for an early contribution.

2. Model

There are I agents where I ≥ 2. The agents have to choose whether to provide a public good
or not. This decision is denoted by y ∈ [0, 1] where y is the probability with which the public
good is provided. Agent i ∈ {1, . . . , I} has valuation vi for the public good. I assume that
vi is distributed on [v, v̄] according to a distribution with cumulative distribution function H
and that agents’ valuations are independent. Put differently, valuations are independently
and identically distributed across agents. The expected value of H is denoted by µ and its
variance by σ2 > 0. Agent i’s payoff equals yvi− ti where ti is a transfer payment agent i may
have to make (either to finance the public good or to compensate other agents). The costs
of the public good are denoted by c. There is no source of outside financing and therefore∑I

i=1 ti ≥ c if y = 1 and
∑I

i=1 ti ≥ 0 if y = 0.
Agents know neither their own valuation vi nor the valuation of any other agent j 6=

i. However, each agent observes a noisy signal θi of his own valuation (and this signal is
2Symmetry means in this context that all agents receive an independent signal from the same information

structure. There are several reasons for the restriction to symmetry. First, it is well known that with correlated
signals first best can be achieved generically following arguments in Cremer and McLean (1988). Second, this
case seems to be of particular interest for democratic societies in which equal, non-discriminatory treatment
of agents is required. Third, it is natural to interpret an information structure as a a set of attributes that is
made publicly available and then compared by the agents with their personal needs. As the actual information
is public, this would immediately imply symmetry of the information structure.
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independent of other players’ signals and valuations). As agents care only about expected
valuations it is without loss of generality to identify a signal with the expected valuation it
induces. Therefore, the signal technology is denoted by a distribution F of expected valuations.
That is, the support of F , denoted by Θ, is a subset of [v, v̄] and by Bayes’ consistency H has
to be a mean preserving spread of F . Note that all players are assumed to have access to the
same information technology and therefore draw their types θi independently from the same
distribution F , see footnote 2 for a justification of this assumption.

Given an information structure F , it is – by the revelation principle – without loss of
generality to consider only incentive compatible direct revelation mechanisms. A direct rev-
elation mechanism consists of two functions q : ΘI → [0, 1] and t : ΘI → RI where q(θ) is
the probability that the public good is provided if the vector of types is θ = (θ1, . . . , θI) and
t(θ) = (t1(θ), . . . , tI(θ)) is the vector of transfers agents have to pay given type vector θ. A
direct revelation mechanism is incentive compatible if

Eθ−i [y(θ)θi − ti(θ)] ≥ Eθ−i
[
y(θ̃i, θ−i)θi − ti(θ̃i, θ−i)

]
∀i ∈ {1, . . . , I}, θi ∈ Θ, θ̃i ∈ Θ. (1)

Participation in the mechanism is assumed to be voluntary at the interim stage. That is, the
participation constraint

Eθ−i [y(θ)θi − ti(θ)] ≥ 0 (2)

has to hold for all i ∈ {1, . . . , I} and θi ∈ Θ.
The main objective of the paper is to find the information structure F and mechanism

(y, t) that jointly maximize expected welfare from an ex ante point of view. Expected welfare
equals

∑I
i=1 Eθ [y(θ)θi − ti(θ)], i.e. equal welfare weights for all agents are assumed. It is

furthermore assumed that the vector of valuations is relevant for the welfare optimal decision,
i.e. Iv < c < v̄I. Note that in those section dealing with limit results in I costs are allowed
to vary in I and are therefore written as c(I).3

3. Analysis

3.1. Limit result
The following result states that expected welfare in the optimal information structure con-
verges to first best welfare if the number of agents grows large. Put differently, the free rider
problem that hampers efficiency without information design can be eradicated by information
design. The intuition is that, by the law of large numbers, the average valuation becomes pre-
dictable as the number of agents grows large. In fact, it is unnecessary to provide the agents
with any information in the limit as I tends to infinity as all the necessary information for an
efficient decision is contained in the prior. This is reminiscent of decision making behind the
“veil of ignorance”: the decision is made in a state in which payoff consequences for specific
individuals are unknown.

Proposition 1. Let c(I) be the cost of the public good as a function of the number of agents I
3A classic example for a public good is street lighting. It makes intuitive sense that the costs of street

lighting are higher for cities with more inhabitants as those cities are likely to consist of more streets.
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and assume that c̄ ≡ limI→∞ c(I)/I exists. If c̄ 6= µ, then expected welfare under the optimal
information structure equals expected first best welfare in the limit as I →∞.

Proof of proposition 1: Denote the limit limI→∞ c(I)/I as c̄ and recall that µ (σ) denotes
the expected value (standard deviation) of H. I distinguish two cases.

Case 1: µ > c̄ Expected welfare in the optimal information structure is bounded from below
by the welfare of the totally uninformative information structure, i.e. every agent receives
the same signal independent of valuation, and the mechanism that provides the public good
regardless of signals while allocating an equal cost share to each agent. Note that by µ > c̄

this mechanism is incentive compatible and satisfies the participation constraint in the totally
uninformative information structure.

The expected welfare loss of always providing the public good compared to first best can be
written as L =

∫ c(I)
−∞ c(I)−W dG(W ) where W =

∑I
i=1 vi and G(W ) denotes the distribution

of W . The central limit theorem states that Z = (
∑I

i=1(vi − µ))/(
√
Iσ) is (approximately)

standard normally distributed if I is sufficiently large. Denoting the cdf (pdf) of the standard
normal distribution as Φ (φ), L can for large I therefore be rewritten as

L ≈
∫ c(I)−Iµ√

Iσ

−∞
c(I)−Iµ−Z

√
Iσ dΦ(Z) = −Φ

(
c(I)− Iµ√

Iσ

)(
E
[
Z|Z ≤ c(I)− Iµ√

Iσ

]√
Iσ − c(I) + Iµ

)

= −Φ
(√

I
c(I)/I − µ

σ

)−φ
(
c(I)−Iµ√

Iσ

)
Φ
(
c(I)−Iµ√

Iσ

)√Iσ − c(I) + Iµ


= φ

(
−
√
I
µ− c(I)/I

σ

)√
Iσ −

(
µ− c(I)

I

)
IΦ
(
−
√
I
µ− c(I)/I

σ

)
where the third step uses the well known fact that E[Z|Z ≤ a] = −φ(a)/Φ(a) if Z is standard
normally distributed. By assumption, µ−c(I)/I converges to the positive number (µ− c̄)/σ as
I grows large. This implies that limI→∞ φ

(
−
√
I µ−c(I)/Iσ

)√
Iσ = 0. Furthermore, the second

term in the last line converges to zero as limx→∞ xΦ(−
√
x) = 0. This proves the claim for

case 1.

Case 2: µ < c̄ The proof is analogous to case 1 but using the mechanism that never provides
the public good in combination with the completely uninformative information structure.

Note that this result contrasts sharply with a conventional mechanism design result stating
that welfare converges to zero if the number of agents grows large for a fixed information
structure. That is, the free riding problem becomes maximal as the number of agents grows
if a (somewhat informative) information structure is fixed but the free rider problem becomes
irrelevant if the information structure is chosen optimally.

Lemma 1. Let c(I) be the cost of the public good as a function of the number of agents I and
assume that c̄ > θ exists where θ = inf supp(F ) and c̄ = limI→∞ c(I)/I. Expected welfare
under the optimal mechanism for a given information structure equals zero in the limit as
I →∞.
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3.2. Welfare maximal mechanism for a given information structure
Before turning to the optimal information structure it is necessary to determine the optimal
mechanism for a given finite information structure. The derivation is similar to the standard
derivation with a continuum of types, see for example Börgers (2015, ch. 3.3.4).

Let Θ = {θ1, . . . , θn} and denote the probability that θi equals θk as fk. In a given direct
revelation mechanism denote by Yi(θk) the expected probability that agent i with signal θk

assigns to the public good being provided, i.e. Yi(θk) = Eθ−i [y(θ)|θi = θk]. Denote the
expected utility of agent i with type θk in a given mechanism by Ui(θk) = Yi(θk)θk − Ti(θk)
where the expected transfer Ti(θk) is defined as Ti(θk) = Eθ−i [ti(θ)|θi = θk]. The following
lemma characterizes incentive compatibility.

Lemma 2. A direct revelation mechanism is incentive compatible if and only if Yi is increasing
for all i = 1, . . . , I and

Ui

(
θk
)

= Ui

(
θk−1

)
+ Ỹi

(
θk−1

)(
θk − θk−1

)
(3)

for some Ỹi(θk−1) ∈
[
Yi(θk−1), Yi(θk)

]
.

The objective is to maximize expected welfare which equals

Eθ

[
y(θ)

(
I∑
i=1
{θi} − c

)]
=

I∑
i=1

n∑
k=1

Yi(θk)fk
(
θk − c

I

)
. (4)

The main constraint, next to incentive compatibility and participation constraints, is the
budget balance constraint which can be written as4

Eθ

[
I∑
i=1
{Ti(θi)} − y(θ)c

]
≥ 0

⇔
I∑
i=1

Eθi [Yi(θi)θi − Ui(θi)− Yi(θi)c/I] ≥ 0

which after plugging in (3) becomes5

⇔
I∑
i=1

n∑
k=1

fk

[
Yi(θk)θk − Ui(θ1)−

k−1∑
m=1

Ỹi(θm)(θm+1 − θm)− Yi(θk)c/I

]
≥ 0

⇔ −
I∑
i=1
{Ui(θ1)}+

I∑
i=1

n∑
k=1

[
fkYi(θk)(θk − c/I)− Ỹi(θk)(θk+1 − θk)(1− F (θk))

]
≥ 0.

By the participation constraint Ui(θ1) ≥ 0. As Ui(θ1) does not enter the objective, it is clearly
optimal to choose it as low as possible in order to relax the budget balance constraint, i.e.

4It is well known that ex ante budget balance is equivalent to ex post budget balance in this setup, see
Börgers and Norman (2009) or Proposition 3.6 in Börgers (2015, p. 48). I use the simpler to handle ex ante
version here.

5I use the convention θn+1 = θn to simplify notation.
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Ui(θ1) = 0. Furthermore, it is optimal to choose Ỹi as low as possible to relax the budget
balance constraint. By lemma 2, Ỹi(θm) ≥ Yi(θm) and therefore Ỹi(θm) = Yi(θm) is optimal.
These considerations yield the implementation condition:

I∑
i=1

n∑
k=1

Yi(θk)
(
θk − c

I
− (θk+1 − θk)1− F (θk)

fk

)
fk ≥ 0. (C)

Define δi as θk+1 − θk if θi = θk. Neglecting the monotonicity constraint for the time
being, the Lagrangian is then

L =
I∑
i=1

n∑
k=1

Yi(θk)
([
θk − c

I

]
(1 + λ)− λ(θk+1 − θk)1− F (θk)

fk

)
fk

= Eθ

[
y(θ)

I∑
i=1

([
θi −

c

I

]
(1 + λ)− λδi

1− F (θi)
f(θi)

)]
. (5)

The optimal mechanism is then

y∗(θ)


= 1 if

∑I
i=1
[
θi − c

I

]
(1 + λ)− λδi 1−F (θi)

f(θi) > 0

∈ [0, 1] if
∑I

i=1
[
θi − c

I

]
(1 + λ)− λδi 1−F (θi)

f(θi) = 0

= 0 if
∑I

i=1
[
θi − c

I

]
(1 + λ)− λδi 1−F (θi)

f(θi) < 0.

(6)

Note that y∗ is symmetric across players and therefore I will write Y , U and T instead of
Yi, Ui and Ti in the following. However, it remains to check that the neglected monotonicity
constraint on Y is indeed not binding in the solution. Note that this would be obvious if (C)
was slack, i.e. if λ = 0. If λ 6= 0, monotonicity appears to be hard to verify on first sight as the
distribution F will be the welfare maximizing information structure that is endogenous in the
setting of this paper. However, the following lemma verifies that the monotonicity constraint
does not bind in the welfare maximizing information structure with n signals.6

Lemma 3. Let F be the welfare maximizing information structure with at most n signals.
Then, the monotonicity constraint on Y does not bind.

3.3. Optimal information structure
The following result states that welfare maximizing information structures have a relatively
simple form. More specifically, they are monotone partitions of the type space. That is,
if H has a density, then the optimal information structure is given by a number of cutoffs
(c0, c1, . . . , cn) such that all types in between ck−1 and ck receive signal θk. If H is discrete or
has mass points, it is more natural to think of cutoffs (c0 = 0, c1, . . . , cn−1, cn = 1) where fk =
ck − ck−1 and the lowest (highest) type receiving signal θk is given by H−1(ck) (H−1(ck−1))
where H−1 is the pseudo-inverse of H.

6It is in fact straightforward to extend the lemma to optimal information structures with an infinite number
of signals and therefore neglecting the monotonicity constraint in the derivation of the optimal mechanism is
unproblematic given that F is the optimal information structure.
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Proposition 2. The welfare maximizing information structure with at most n signals is a
monotone partition of the type space.

One may wonder why the optimal information structure with at most n signals is of
independent interest. The first reason is that a welfare level arbitrarily close to the optimal
welfare level can be achieved by a finite information structure.

Lemma 4. Take any information structure F and denote expected welfare in this informa-
tion structure (using the optimal mechanism) by WF . Then for any ε > 0 there exists an
information structure Fn with finite support such that welfare under Fn (using the optimal
mechanism) is at least WF − ε.

The second reason is that combining proposition 2 and lemma 4 implies that the optimal
information structure is finite whenever the support of H is finite. The optimal information
structure is therefore a finite, monotone partition of the type space if the distribution of
valuations, H, has finite support.

Corollary 1. The information structure maximizing expected welfare is finite if the support of
H is finite.

3.4. Example: binary types
This subsection deals with the special case in which the support of the true type distribution
H is binary. Corollary 1 already established that in this case the optimal information structure
is finite. The following lemma extends this result by establishing that the optimal information
structure is in fact binary.

Lemma 5. Let the support of H be binary. The support of the expected welfare maximizing
information structure is then binary.

Given a binary signal structure, the first best mechanism can be stated as follows: the
public good should be procured if θhIh + θlI l ≥ c(I) where Ih (I l) is the number of agents
with a high signal θh (θl). That is, there is a cutoff Îh such that the public good is procured
under the first best rule if and only if the number of agents with a high signal weakly exceeds
Îh.

The expected welfare maximizing second best mechanism in (6) can also be stated in
simple terms. In the binary case, (6) can be rewritten as saying that the public good is
provided only if

Ih
(
θh − c(I)

I

)
+ I l

(
θl − c(I)

I

)
≥ I l λ

1 + λ

1− f l

f l
(θh − θl).

The first best rule provides the public good whenever the left hand side is positive. That
is, the public good is provided in less cases than under first best, i.e. only if the number
of agents with a high signal is sufficiently above Îh. Given this, it is clear that the optimal
mechanism provides the public good if and only if the number of agents with a high signal
is (weakly) above a threshold Ĩh. This threshold is chosen as the lowest Ih weakly above Îh

7



such that (C) holds because choosing a higher threshold would clearly reduce welfare. To be
more precise, the optimal mechanism might use mixing so that (C) holds with equality. For
example, when choosing the threshold equal to 7 might lead to a budget deficit but choosing
it equal to 8 might create a surplus. In this case, the public good is provided for sure if Ih

is 8 or higher and is provided with a probability α > 0 in case Ih equals 7. The probability
α is chosen such that (C) holds with equality. For completeness, note that (C) with binary
signals can be written as

Y (θl)
(
θl − c(I)

I
− (θh − θl)1− f l

f l

)
f l + Y (θh)

(
θh − c(I)

I

)
(1− f l) ≥ 0

where

Y (θl) = α

(
I − 1
Ĩh

)
(1− f l)Ĩhf lI−1−Ĩh +

I∑
k=Ĩh+1

(
I − 1
k

)
(1− f l)kf lI−1−k

Y (θh) = α

(
I − 1
Ĩh − 1

)
(1− f l)Ĩh−1f l

I−Ĩh +
I∑

k=Ĩh

(
I − 1
k

)
(1− f l)kf lI−1−k

.

By lemma 5, an information structure in the binary setting can be described by one
number, e.g. the share f l of agents receiving a low signal. With a binary signal technology,
which is optimal by lemma 5, this yields immediately fh = 1−f l. Concentrating on monotone
partitions, which are optimal by proposition 2, the signals immediately follow: if f l < hl, then
θl = vl and θh = vl(hl− f l)/fh+ vhhh/fh; if f l ≥ hl, then θh = vh and θl = vlhl/f l + vh(f l−
hl)/f l. For the information structure associated with f l, the optimal mechanism can be
computed as above. Consequently, the search for the optimal information structure can be
written as a one-dimensional maximization problem over f l. Although this problem has no
closed form solution it is easily solvable numerically.

Figure 1 illustrates per agent welfare in the optimal information structure. Welfare under
the optimal mechanism without designing the information structure tends – in line with lemma
1 – to zero as the number of agents increases. The reason for this is the well known free-rider
problem. As the number of agents grows, first a gap between first best welfare and welfare in
the optimal information structure emerges. This gap closes as the number of agents gets large
as implied by proposition 1. The welfare gap is most problematic for intermediate number of
agents because the free rider problem is already severe while information design cannot make
use of the predictability of the large numbers yet.7

7One may wonder why first best welfare is decreasing in the number of agents. This is easiest explained in
an example: if there is a single agent whose valuation is high or low, then he will buy the good if and only if
the valuation is high and therefore the full upside of a high valuation is exploited. If there are many agents,
then sometimes the first agent will have a high valuation but the other agents have low valuations. In these
cases the public good may not be provided and the high valuation of the first agent is “wasted”.
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Figure 1: Per agent welfare as a function of I under first best (dashed), using the optimal
information structure (solid) and using the optimal mechanism with a fully informative infor-
mation structure (dotted). Parameters: c(I) = 0.4I, vh = 1, vl = 0, hl = 0.5

4. Conclusion

While an increase in the number of agents exacerbates the free riding problem in standard
public good problems and thereby makes efficiency impossible, the opposite is true if infor-
mation design can be used. Namely, first best efficiency can be reached in the limit if the
number of agents grows large. The idea is that the efficient decision can be made based upon
the prior due to the law of large numbers. Hence, no information beyond the prior is opti-
mally given to the agents. In practice, this could for example mean that the decision is taken
without detailed inquiries into distributional consequences and at an early stage before payoff
consequences to specific individuals are known. This is reminiscent of decision making behind
the “veil of ignorance”, i.e. before any private information is realized.
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Appendix

Proof of lemma 1: The proof is given for the case where F has a density f . However, this is
for notational convenience only and the result is true for finite information structures as well.8

To ease notation let f̄(θ) = prodii=1f(θi), i.e. f̄(θ) is the density of the vector θ = (θ1, . . . , θI).
Following Börgers (2015, p. 55), the implementation condition can be written as

∫
ΘI
y(θ)

[
I∑
i=1
{θi −

1− F (θi)
f(θi)

− c(I)
I
}

]
f̄(θ) dθ ≥ 0.

Let Θ̃ = {θ|y(θ) = 0}. I will show that the implementation condition implies that Θ̃ has full
probability in the limit as I →∞. Given that the probability that the public good is provided
is zero in the limit, expected welfare equals zero as I →∞.

Consider the random variable

Zi = θi −
1− F (θi)
f(θi)

− c̄

where θi is distributed according to F . Then

E[Zi] = µ−
∫

Θ
1− F (θi) dθi − c̄ = θ − c̄ < 0

where the second equality uses integration by parts. Given that Zi for i = 1, . . . , I are
independently and identically distributed with finite expectation,

∑I
i=1 Zi/I converges almost

surely to θ − c̄ < 0 as I → ∞ by the law of large numbers, see for example Theorem 8.32 in
Capinski and Kopp (2004, p. 266). Note that the implementation condition can be rewritten
as ∫

ΘI
y(θ)I

[
c̄− c(I)/I +

I∑
i=1

Zi/I

]
f̄(θ) dθ ≥ 0.

The previous step implies that the term in brackets is strictly negative with probability 1
in the limit as I → ∞. Consequently, the implementation condition requires y(θ) = 0 with
probability 1 in the limit as I →∞.
Proof of lemma 2: If: Let (3) hold and Yi be increasing. Let k > j. Iterating (3), yields

Ui(θk) = Ui(θj) +
k−1∑
m=j

Ỹi(θm)(θm+1 − θm). (7)

As Ỹi(θm) ≥ Yi(θm) ≥ Yi(θj) by the monotonicity of Yi, this implies

Ui(θk) ≥ Ui(θj) +
k−1∑
m=j

Yi(θj)(θm+1 − θm) = Ui(θj) + Yi(θj)(θk − θj)

8The steps of the proof for the finite case are the same: One starts with the implementation condition
(C) and utilizes the “discrete integration by parts” formula

∑n
k=1−(θk+1 − θk)(1 − F (θk)) = −µ + θ1 < 0.

Everything else remains virtually unchanged. Mixed distributions can be approximated arbitrarily closely by
finite distributions.
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which is equivalent to saying that signal θk does not want to misrepresent as signal θj .
Similarly, (7) in combination with Ỹi(θm) ≤ Ỹi(θm+1) ≤ Yi(θk) implies

Ui(θk) ≤ Ui(θj) +
k−1∑
m=j

Yi(θk)(θm+1 − θm) = Ui(θj) + Yi(θk)(θk − θj)

which is equivalent to saying that signal θj does not want to misrepresent as signal θk. As
i, j, k were arbitrary this proves that the conditions of the lemma imply incentive compati-
bility.

Only if: Let the mechanism be incentive compatible. This implies in particular that
Ui(θk) ≥ Ui(θk−1) − Yi(θk−1)θk−1 + Yi(θk−1)θk and also Ui(θk−1) ≥ Ui(θk) − Yi(θk)θk +
Yi(θk)θk−1. Taking these two inequalities together yields

Yi(θk) ≥
Ui(θk)− Ui(θk−1)

θk − θk−1 ≥ Yi(θk−1)

which implies that Yi(θk) ≥ Yi(θk−1), i.e. Yi is increasing, and that (3) holds with Ỹi(θk−1) =
(Ui(θk)− Ui(θk−1))/(θk − θk−1).
Proof of lemma 3: The claim is obvious if λ = 0. Therefore, let λ 6= 0 in the following.
Suppose contrary to the claim in the lemma that Y (θk) = Y (θk+1) in the optimal information
structure with at most n signals and let k be the lowest bunched signal if more than two
signals are bunched on the same Y . The proof idea is to “merge” the two signals θk and θk+1

to one signal. It will be shown that this does not directly affect the objective but strictly
relaxes (C) and therefore the desired contradiction is obtained. The intuitive idea underlying
the proof is that merging signals leads to less information and therefore lower information
rents.

Consider the alternative information structure that differs from the optimal one by merging
θk and θk+1 to signal θ̃ = θkfk/(fk + fk+1) + θk+1fk+1/(fk + fk+1) with f(θ̃) = fk + fk+1.
Adjust the decision rule y in case at least one agent has signal θ̃ by taking the expected decision.
E.g. if agent i has signal θ̃ (and no other agent has signal θ̃) then y(θ̃, θ−i) = y(θk, θ−i)fk/(fk+
fk+1)+y(θk+1, θ−i)fk+1/(fk+fk+1). Note that this leaves Y (θm) unchanged form 6∈ {k, k+1}
and Y (θ̃) = Y (θk) = Y (θk+1). This implies that the objective value in (4) is not affected by
the merging of signals.

It remains to show that (C) is strictly relaxed. Focussing on the inner sum in (C), the
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only terms that are affected by the change can be written as9

Y (θk−1)
(
−θk(1− F (θk−1))

)
+ Yi(θk)

(
θkfk − c

I
fk − (θk+1 − θk)(1− F (θk))

)
+Y (θk+1)

(
θk+1fk+1 − c

I
fk+1 − (θk+2 − θk+1)(1− F (θk+1))

)
= Y (θk−1)

(
−θk(1− F (θk−1))

)
+ Ỹ

(
θ̃f̃ − c

I
f̃ − (θk+2 − θ̃)(1− F (θk+1)

)
+Ỹ

(
−θ̃(1− F (θk+1))− fk+1θk+1 + (1− F (θk))θk

)
= Y (θk−1)

(
−θ̃(1− F (θk−1))

)
+ Ỹ

(
θ̃f̃ − c

I
f̃ − (θk+2 − θ̃)(1− F (θk+1)

)
Y (θk−1)(1− F (θk−1))(θ̃ − θk) + Ỹ

(
−θ̃(1− F (θk+1))− fk+1θk+1 + (1− F (θk))θk

)
< Y (θk−1)

(
−θ̃(1− F (θk−1))

)
+ Ỹ

(
θ̃f̃ − c

I
f̃ − (θk+2 − θ̃)(1− F (θk+1)

)
Ỹ (1− F (θk−1))(θ̃ − θk) + Ỹ

(
−θ̃(1− F (θk+1))− fk+1θk+1 + (1− F (θk))θk

)
= Y (θk−1)

(
−θ̃(1− F (θk−1))

)
+ Ỹ

(
θ̃f̃ − c

I
f̃ − (θk+2 − θ̃)(1− F (θk+1)

)
+Ỹ

(
θ̃f̃ − fk+1θk+1 − fkθk

)
= Y (θk−1)

(
−θ̃(1− F (θk−1))

)
+ Ỹ

(
θ̃f̃ − c

I
f̃ − (θk+2 − θ̃)(1− F (θk+1)

)
.

As the last line contains exactly the relevant terms for (C) in the modified information struc-
ture, it follows that the merging of signals relaxed the binding constraint (C).
Proof of proposition 2: Suppose otherwise. That is, there exist set of types Nk and Nk+1

with mass η > 0 such that all types in Nk receive signal θk and all types in Nk+1 receive
signal θk+1 while E[vi|vi ∈ Nk] > E[vi|vi ∈ Nk+1].

Consider the optimization problem of maximizing (5) over θk and θk+1 while fixing y, F
and all other θj (for j 6=, k, k + 1) at their welfare values in the welfare maximizing informa-
tion structure and mechanism.10 More specifically, I consider a one-dimensional optimization
problem over a parameter ε where

θk(ε) = (fk − ε)θk + εθk+1

fk

θk+1(ε) = (fk+1 − ε)θk+1 + εθk

fk+1 .

Note that for ε = 0, θk(0) = θk and θk+1(0) = θk+1. That is, optimality of θk and
θk+1 imply that L has to be maximized by ε = 0 over the set of ε that yield feasible signal
distributions. I will argue below that an open neighborhood of 0 is feasible for ε in this sense

9To cut short on notation, I use Ỹ = Y (θk) = Y (θk+1) and f̃ = fk + fk+1.
10Welfare maximizing information structure and mechanism exist by the Weierstrass theorem as the problem

is finite dimensional by assumption.
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and therefore the derivative of L with respect to ε has to be zero at ε = 0:

∂L
∂ε

= I(θk+1 − θk)
[
Y (θk)(1 + λ+ λ(1− F k)/fk)− λY (θk−1)(1− F k−1)/fk

]
− I(θk+1 − θk)

[
Y (θk+1)(1 + λ+ λ(1− F k+1)/fk+1)− λY (θk)(1− F k)/fk+1

]
.

Note that ε is not part of ∂L/∂ε, i.e. L is linear in ε. That is, ∂L/∂ε|ε=0 6= 0 unless L is
linear with slope 0 in ε, i.e. unless ε does not affect L. I will now argue that ∂L/∂ε = 0
contradicts the assumed optimality of y and θk and θk+1.

Suppose to the contrary that ∂L/∂ε = 0. There exists an ε′ > 0 such that

θk(ε′)− c

I
− (θk+1(ε′)− θk(ε′))1− F k

fk
= θk+1(ε′)− c

I
− (θk+2 − θk+1(ε′))1− F k+1

fk+1 ,

i.e. an ε′ > 0 such that the virtual valuation of θk(ε′) equals the virtual valuation of signal
θk+1(ε′). This is true as (i) for ε′ = 0, the virtual valuation of θk+1 is higher than that of
θk, (ii) the virtual valuation of θk is increasing in ε, (iii) the virtual valuation is decreasing
in ε and (iv) the virtual valuation of θk(ε) would exceed the virtual valuation of θk+1(ε) if
ε was so high that θk(ε) = θk+1(ε). As ∂L/∂ε = 0 and L is linear in ε, L evaluated at ε′

equals L evaluated at ε = 0. As a next step, change y by averaging over θk and θk+1, i.e.
ỹ(θi = θk, θ−i) = fky(θi = θk, θ−i)/(fk + fk+1) + fk+1y(θi = θk+1, θ−i)/(fk + fk+1) and also
ỹ(θi = θk+1, θ−i) = fky(θi = θk, θ−i)/(fk + fk+1) + fk+1y(θi = θk+1, θ−i)/(fk + fk+1).11 As
L is linear in y and the virtual valuation is the same for θk(ε′) and θk+1(ε′), this change in
y does not affect the value of L. Note, however, that Ỹ k = Ỹ k+1. This implies by the same
argument as in the proof of lemma 3 that merging the two signals θk(ε′) and θk+1(ε′) will
not affect the objective but strictly relax the binding implementation condition and therefore
strictly increase L. But this implies that (θk, θk+1, y(θk, ·), y(θk+1, ·)) do not jointly maximize
L in an auxilliary problem in which all other variables are fixed at their optimal value. This,
however, contradicts the optimality of (θk, θk+1, y(θk, ·), y(θk+1, ·)).

As it was now shown that ∂L/∂ε = 0 is impossible in the optimum, all that remains to be
shown is that there exists an open neighborhood of ε around zero such that the information
structures created above are feasible in this neighborhood, i.e. H is a mean preserving spread
of the distributions generated by (θ1, . . . , θk(ε), θk+1(ε), . . . , θn) and (f1, . . . , fn). Note that
for ε ≥ 0 this follows immediately from feasibility of the original information structure as an
increase in ε“adds noise” to the original information structure by sending ε of those types that
originally received signal θk the signal θk+1 and vice versa. The feasibility for ε < 0 follows
from the assumption that the original information structure is not a monotone partition. To
see that ε < 0 is feasible, consider changing the information structure by swapping the signal
of mass τ < η in Nk and Nk+1, i.e mass τ < η of the types in Nk receives signal θk+1 (instead
of θk) and mass τ in Nk+1 receives signal θk (instead of θk+1). This is clearly feasible and does
not change fk or fk+1 but the expected valuation when receiving signals θk or θk+1 changes

11It is understood that this transformation is applied iteratively if several players have a signal in {θk, θk+1}.
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to

θ̃k(τ) =
fkθk − τ

(
E[v|v ∈ Nk]− E[v|v ∈ Nk+1]

)
fk

θ̃k+1(τ) =
(ωk+1θk+1 + τ

(
E[v|v ∈ Nk]− E[v|v ∈ Nk+1]

)
fk+1 .

Choosing τ = −ε(θk+1 − θk)/
(
E[v|v ∈ Nk]− E[v|v ∈ Nk+1]

)
yields θk(ε) and θk+1(ε) for

negative ε.
Proof of lemma 4: Consider the hypothetical problem of maximizing expected welfare subject
to budget balance being violated by no more than η (through the choice of an information
structure and mechanism). Denote the by W ∗(η) the value of this maximization problem
(more formally, the supremum of welfare achievable by information structures and mecha-
nisms that do not violate the ex ante budget balance constraint by more than η). As both
expected welfare and the budget balance condition are continuous in mechanism and informa-
tion structure, W ∗ is also continuous. Let η̃ < 0 be such that W ∗(0) −W ∗(η̃) < ε/3. (Note
that a negative η indicates a stricter constraint.)

Define the set of distributions Fκ as the set of distributions with cdfs Fκ such that (i)
EFκ [v] ≤ EH [v]−κ and (ii)

∫ x
−∞ Fκ(v) dv ≤

∫ x
−∞H(v+κ) dv−κ for all x ∈ (−∞,max supp(H)−

κ]. Note that F0 is the feasible sets of distributions in the welfare maximization problem of
this paper as the set of mean preserving spreads of a distribution equals the set of distributions
that have the same mean while also second order stochastically dominating the distribution,
see Mas-Colell et al. (1995, ch. 6.D).

Consider now the problem of maximizing welfare subject to budget balance being violated
by no more than η̃ over the sets Fκ. Let F denote an information structure such that under
this information structure and the optimal mechanism (i) budget balance is violated by at
most η̃, (ii) welfare is above W ∗(η̃)− ε/3 and (iii) F ∈ Fκ̃ for some κ̃ > 0. Such F and κ̃ exist
by the definition of η̃ and as the conditions defining Fκ are continuous in κ (while welfare and
budget balance constraint are continuous in signals).12

Approximate F by a series of distributions (Fn)∞n=1 such that (i) the support of Fn has at
most n elements and (ii) Fn → F almost everywhere. Then Fn converges to F weakly and by
the Helly-Bray theorem welfare and budget balance under Fn converge to the corresponding
values under F .13 Therefore for some sufficiently high n∗ welfare under Fn∗ is above W ∗(η̃)−
2ε/3 > W ∗(0) − ε and budget balance is “violated” by at most η̃ < 0. But this implies – by
η̃ < 0 – that under the finite information structure Fn∗ welfare above W ∗(0)− ε is achievable
without violating budget balance. Finally, define F ∗n∗ by “shifting Fn∗ up” such that F ∗n∗ has
expected value EH [v], i.e. F ∗n∗(x) = Fn∗

(
x− EH [v] + EFn∗ [v]

)
and note that the definition of

Fκ̃ implies EH [v] − EFn∗ [v] > 0 (for n∗ sufficiently high). Note that shifting the distribution
12For readability and notational convenience, I assume in the following that F is continuous. If F already has

finite support, the following approximation step is, of course, unnecessary. If F is mixed with a finite number
of mass points, the following approximation is understood to be applied only to the continuous part, i.e. Fn
has the same mass points as F but also discretizes its continuous parts.

13We use the same mechanism as under F here. For completeness, define y(θ) = supθ′≤θ, θ′∈supp(F )y(θ′)
for all θ not in the support of F (and let y(θ) = 0 if y(θ′) is not defined for any θ′ ≤ θ). This ensures the
monotonicity of Y .
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of valuations up by a constant, increases welfare and relaxes the budget balance constraint.
Consequently, welfare under F ∗n∗ is above W (0) − ε. Furthermore, H is a mean preserving
spread of F ∗n∗ by the definition of Fκ̃. Consequently, welfare of at least W (0) − ε can be
achieved by a feasible finite information structure.

Proof of corollary 1: Let the support of H consist of m elements. Let W ∗ be the supremum
of the set of welfare values achievable by all information structures and mechanism under
constraint (C). For n = 1, 2 . . . , there exists a finite information structure that yields welfare
W ∗−1/n by lemma 4. By proposition 2, this information structure is a monotone partition. A
monotone partition of H leads to a signal structure with at most 2m−1 elements because the
support of H consisted of only m elements. Put differently, for any ε > 0 welfare greater than
W ∗ − ε can be achieved by a monotone partition with at most 2m − 1 elements. Therefore,
welfare of W ∗ can be achieved by a monotone partition with at most 2m − 1 elements.
This shows that the welfare maximizing information structure is finite if the support of H is
finite.
Proof of lemma 5: This proof utilitzes a more general result stated here as a separate lemma:

Lemma 6. Let the true type distribution of buyer valuations H be discrete and let its support
be {v̂1, v̂2, . . . }. If v̂i and v̂i+1 are in the support of the optimal signal distribution with at
most n signals, then the optimal information structure assigns zero probability to all signals
in (v̂i, v̂i+1).

Proof of lemma 6: Suppose otherwise, i.e. let the optimal information structure put positive
probability on types θ−i < θi < θi+1 and let θi−1 and θi+1 be neighboring elements in the
support of H.14 Denote the corresponding probabilities in the optimal information structure
by f i−1, f i and f i+1. We will consider the following alternative distributions indexed by ε:

f̃ i−1(ε) = f i−1 − ε θi+1 − θi

θi+1 − θi−1

f̃ i(ε) = f i + ε

f̃ i+1(ε) = f i+1 − ε θi − θi−1

θi+1 − θi−1 .

(All other variables, e.g. the mechanism and support of F , are fixed at their optimal levels.)
Note that the expected valuation is not affected by changes in ε and as θi−1 and θi+1 are
neighboring elements of the true valuation support positive as well as negative ε are feasible
(if not too large in absolute value).

Now consider the Lagrangian L of the maximization problem maximizing expected welfare
over ε subject to (C) (fixing all other variables at their optimal level). From the definition
f̃ i−1, f̃ i and f̃ i+1, it is clear the L is linear in ε. As f i−1, f i and f i+1 are by assumption
part of the optimal solution, L has to be maximized by ε = 0. As L is linear in ε and as ε
in an open interval around 0 are feasible, this can only be the case if the derivative of L with
respect to ε is zero everywhere. In the following it is shown that this is not possible.

Suppose the derivative of L with respect to ε is zero everywhere. For ε = 0, we have
14By proposition 2, there can be at most one signal between θi−1 and θi+1.
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V V (θi−1, 0) < V V (θi, 0) < V V (θi+1, 0) by lemma 3 (where V V (θk, ε) = (1 + λ)(θk − c/I) −
λ(θk+1−θk)(1−F̃ (θk, ε)/f̃k(ε) denotes the virtual valuation of θk for a given ε). As ε increases
the virtual valuations change as f̃ i−1 and f̃ i+1 decrease while f i increases. Denote by ε′ > 0
the lowest ε such that (at least) one of the following conditions is met

• V V (θi, ε) = V V (θi+1, ε)

• f̃ i−1(ε) = 0.

For concreteness, let the first condition be met at ε′, i.e. V V (vi, ε′) = V V (vi+1, ε
′). Note

that the value of L at ε = ε′ is the same as at ε = 0 as the derivative of L with respect
to ε is supposed to be zero. As a next step (which will again not change the value of L),
change y(θj , ·) in case θj ∈ {θi, θi+1} to ỹ(θj , θ−j) = ỹ(θj+1, θ−j) = y(θi, θ−j)f̃ i/(f̃ i + f̃ i+1) +
y(θi+1, θ−i)f̃ i+1/(f̃ i + f̃ i+1) (neglecting the argument “(ε′)” of f̃ · for readability).15 This
change will not affect L as L is linear in y(θj , θ−j) with slope equal to the virtual valuation
and both θi and θi+1 had the same virtual valuation. As a last step, note that – following the
proof of lemma 3 – merging types θi and θi+1 to θif̃ i/(f̃ i + f̃ i+1) + θi+1f̃ i+1/(f̃ i + f̃ i+1) with
probability f̃ i(ε′) + f̃ i+1(ε′) will not affect expected welfare but relax the budget constraint,
see the proof of lemma 3. Hence, the value of L increases due to this change. However, this
contradicts that at the optimal solution L is maximized by the “optimal” values θi−1, θi, θi+1

and f i−1, f i, f i+1 (holding all other variables at their optimal values).
If the other condition is met at ε′, i.e. f̃ i−1(ε′) = 0, the last step of the proof is similar. If

f̃ i−1(ε′) = 0, eliminating θi−1 will strictly increase L as θi’s incentive compatibility constraint
is strictly relaxed.

Note that a monotone partition in case H has binary support can lead to at most three
signals of which two would be the elements in the support of H and the third would be a convex
combination of these two. This is exactly the situation ruled out by lemma 6. Therefore, the
information structure maximizing expected welfare consists of at most two signals.
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