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Abstract

We show that continuous models of stimulus-driven attention can account for
skewness-relatedpuzzles in decision-makingunder risk. First, wedelineate that these
models provide a well-defined theory of choice under risk. We therefore prove that in
continuous—in contrast to discrete—models of stimulus-driven attention each lottery
has a unique certainty equivalent that is monotonic in probabilities (i.e., it monotoni-
cally increases if probability mass is shifted to more favorable outcomes). Second, we
show that whether an agent seeks or avoids a specific risk depends on the skewness
of the underlying probability distribution. Since unlikely, but outstanding payoffs at-
tract attention, an agent exhibits a preference for right-skewed and an aversion toward
left-skewed risks. While cumulative prospect theory can also account for such skew-
ness preferences, it yields implausible predictions on their magnitude. We show that
these extreme implications can be ruled out for continuousmodels of stimulus-driven
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1 Introduction

Few individuals are globally risk-averse or risk-seeking. Instead,many individuals buy in-
surance (i.e., behave as if risk-averse) and gamble in casinos (i.e., behave as if risk-seeking)
at the same time. Whether an agent seeks or avoids a specific risk depends on the skew-
ness of the underlying probability distribution. Typically, agents insure against large po-
tential losses that rarely occur (e.g., Sydnor, 2010; Barseghyan et al., 2013). For example,
natural disasters belong to this group of left-skewed risks. At the same time, many indi-
viduals seek right-skewed risks such as casino gambling according to which a large gain
is realized with a very small probability (e.g., Golec and Tamarkin, 1998; Garrett and So-
bel, 1999; Forrest et al., 2002). The observation that agents tend to seek right-skewed and
avoid left-skewed risks is referred to as skewness preferences.

A compelling explanation for skewness preferences is still missing. As expected util-
ity theory (EUT) implies a valuation for risky options that is linear in probabilities, it
typically predicts either risk-averse or risk-seeking behavior. In particular, for all com-
monly used utility functions, EUT cannot account for skewness preferences. In order to
match experimental and empirical evidence, cumulative prospect theory (CPT; Tversky
and Kahneman, 1992) has proposed a non-linear probability weighting. As a CPT agent
overweights small probabilities by assumption, she exhibits a preference for right-skewed
and an aversion toward left-skewed risks. This mechanism, however, does not offer any
psychologically sound explanation for why skewness matters. In addition, cumulative
prospect theorymakes implausible predictions on themagnitude of skewness preferences
(e.g., Rieger and Wang, 2006; Azevedo and Gottlieb, 2012; Ebert and Strack, 2015, 2016).
Altogether, neither expected utility theory nor cumulative prospect theory convincingly
address the role of skewness in choice under risk.

Models of stimulus-driven attention offer a more intuitive explanation for skewness
preferences. According to these models, individuals are local thinkers whose attention is
automatically directed toward certain outstanding choice features while less attention-
grabbing aspects tend to be neglected.1 Similar to cumulative prospect theory, these ap-
proaches incorporate non-linear probability weighting, but the distortion of a probabil-
ity weight is endogenously determined by the relative size of the corresponding payoff.
Probabilities of outstanding outcomes are inflated, while probabilities of less attention-
grabbing outcomes are underweighted. In a typical lottery game, for instance, the large
jackpot stands out relative to the rather low price of the lottery ticket, thereby attracting
a great deal of attention. Hence, a local thinker overweights the probability of winning
the salient jackpot, and behaves as if she was risk-seeking. In contrast, an agent typically
demands insurance against unlikely, but potentially large losses. Compared to the rather
small insurance premium the large loss stands out, its probability is inflated, and a local
thinker behaves as if she was risk-averse. In fact, the above line of argumentation holds
for differentmodels of stimulus-driven attention, that are, salience theory of choice under risk

1We have borrowed the notion of local thinking from a related model by Gennaioli and Shleifer (2010).
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(Bordalo et al., 2012, henceforth: BGS) and a model of focusing (Kőszegi and Szeidl, 2013,
henceforth: KS). Importantly, in the choice contexts described above our modelling of
economic salience meets the intuitive notion of salience; that is, whatever is salient in the
sense of our model is apparent and not subtle, such as the large potential gains of lottery
gambles, or the large outstanding losses an agent will want to insure against. Altogether,
models of stimulus-driven attention can account for both a preference for right-skewed
and an aversion toward left-skewed risks.

Our contributions in this paper are threefold. First, we show that continuous models
of stimulus-driven attention satisfy basic axioms of choice under risk. In particular, for
any lottery with finitely many outcomes, there exists a well-defined certainty equivalent
that is monotonic in outcomes and probabilities. Kontek (2016) has shown that in discrete
model variants certainty equivalentsmay not exist, andmonotonicity in probabilitiesmay
be violated. These results hinge on the assumption that in the discrete salience model, for
instance, the objective probability of the ith most salient outcome is discounted via a fac-
tor δi+1 for some salience-parameter δ < 1. Then, monotonicity in probabilities may be
violated if the probability mass is shifted from a low, salient outcome to a larger but less
salient outcomewhich is strongly discounted. BGS use the discrete version of their model
for analytical ease. This simplified model is arguably best thought of as an approxima-
tion to the more realistic, but also more complex, continuous model. We show that all
problems raised by Kontek are resolved in the continuous salience and focusing models.

Second, we show that models of stimulus-driven attention predict skewness prefer-
ences. Using the discrete salience model, Bordalo et al. (2013a) have argued why individ-
uals like right-skewed and dislike left-skewed assets, but they have not precisely disentan-
gled a local thinker’s preferences for risk and skewness. In contrast, we formally derive
skewness preferences from continuous models of stimulus-driven attention; that is, we
show that a local thinker is more likely to choose a binary risk if it is ceteris paribus (i.e.,
for a given expected value and variance) skewed further to the right. In addition, we sin-
gle out the channel—namely, the contrast effect—through which models of local thinking
predict skewness preferences. The contrast effectmeans that, when comparing a risky and
a safe option, a risky outcome receives the more attention the more it differs from the safe
option’s payoff. As the models of salience (BGS) and focusing (KS) share the assumption
of contrast effects, both predict skewness preferences.

Third, we show that unrealistic predictions of cumulative prospect theory on themag-
nitude of skewness preferences (e.g., Rieger andWang, 2006; Azevedo and Gottlieb, 2012;
Ebert and Strack, 2015, 2016) can be resolved in the continuous salience and focusingmod-
els. For CPT agents, there always exists a sufficiently skewed, small binary risk with neg-
ative expected value that is attractive. As a consequence, a CPT agent either gambles until
bankruptcy or, if she anticipates her future behavior, does not even gamblewhen expected
gains are arbitrarily large (Ebert and Strack, 2015, 2016). In addition, firms can earn arbi-
trarily large expected profits by selling skewed lotteries to CPT agents (Rieger andWang,
2006; Azevedo and Gottlieb, 2012). Notably, discrete versions of the salience and focus-
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ing models would also yield the unrealistic predictions on gambling behavior delineated
by Ebert and Strack. In contrast, continuous models of stimulus-driven attention predict
more plausible behavior.

Skewness preferences are not only relevant for insurance and gambling decisions, but
have also important implications for many other economic and financial decision situa-
tions. Barberis (2013), for instance, argues that skewness preferences can account for the
puzzle that the average return of stocks conducting an initial public offering (IPO) is be-
low that of comparable stocks that did not conduct an IPO. This could be explained by the
fact that stocks that conduct an IPO are typically right-skewed and therefore overpriced
(Boyer et al., 2010; Bali et al., 2011; Conrad et al., 2013). In this line, Green and Hwang
(2012) find that the more skewed the distribution of expected returns is, the lower the
long-term average return of an IPO-stock is. Chen et al. (2001) even argue that managers
strategically disclose information in order to create positive skewness in the distribution
of stock returns. This also relates to the well-known growth puzzle (Fama and French,
1992) according to which value stocks, which are underpriced relative to financial indica-
tors, yield higher average returns than (overpriced) growth stocks. Bordalo et al. (2013a)
suggest that this discrepancy arises as value stocks are typically left-skewedwhile growth
stocks are usually right-skewed. Relatedly, skewness preferences play an important role
for portfolio selection (Chunhachinda et al., 1997; Prakash et al., 2003; Mitton and Vorkink,
2007), and allow us to understand the prevalent use of technical analysis for asset trades,
even though it is futile in light of the efficient market hypothesis (Ebert andHilpert, 2016).
Finally, a preference for skewness also matters in labor economics. Hartog and Vijverberg
(2007) and Berkhout et al. (2010) argue that workers accept a lower expected wage if the
distribution ofwages in a cluster (i.e., education-occupation combination) is right-skewed.
In line with this evidence, Choi et al. (2016) observe that the number of college students
choosing to major in a certain field is the higher the more right-skewed the distribution
of stock returns of potential employers is. Altogether, skewness preferences help us to
understand various puzzles of economic decision-making.

We proceed as follows. Throughout the paper, we restrict our analysis to the model
of salience (BGS) while we establish the analogous results for the focusing model (KS) in
Appendix B. In Section 2, we present the continuous salience model. Subsequently, we
prove that in this model each discrete lottery has a well-defined certainty equivalent that
satisfies monotonicity (Section 3). In Section 4, we show that the salience model predicts
skewness preferences. In Section 5, we delineate that puzzles on the magnitude of skew-
ness preferences emerging for CPT agents can be resolved in the salience model. Finally,
Section 6 discusses our findings and concludes. All proofs are relegated to Appendix A.

2 Model

According to salience theory of choice under risk, a choice problem is defined by some
choice set C, which contains a finite number of lotteries yielding risky monetary payoffs,
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and the corresponding space of states of the world S. Suppose an agent chooses a lottery
from the set C := {Lx, Ly} where Lx := (x1, p1; . . . ;xn, pn) and Ly := (y1, q1; . . . ; ym, qm)

with n,m ∈ N and
∑n

i=1 pi =
∑m

i=1 qi = 1. The payoffs xi denote pairwisely distinct mon-
etary outcomes, which occur with a strictly positive probability pi > 0 for any 1 ≤ i ≤ n.
If lottery Lx is degenerate (i.e., n = 1), we call it a safe option. We impose analogous con-
ventions for the outcomes of lottery Ly. Each state of the world sij := (xi, yj) corresponds
to a payoff-combination of the available lotteries, and occurs with probability πij > 0.
A decision-maker evaluates monetary outcomes via a strictly increasing value function
u(·) with u(0) := 0. We say that the curvature of u(·) reflects a decision-maker’s intrinsic
risk-attitude; that is, she is intrinsically risk-averse (risk-seeking) if u(·) is concave (convex).
According to EUT, the expected utility U(·) assigned to lottery Lx equals

U(Lx) =
∑
sij∈S

πiju(xi).

According to salience theory of choice under risk, a decision-maker evaluates a lot-
tery by assigning a subjective probability to each state sij that depends on πij and on the
state’s salience. In particular, the salience of state sij ∈ S is determined by a salience func-
tion σ(·, ·), which is symmetric, bounded, continuously differentiable, and satisfies the
following three properties:

1. Ordering. Let µ = sgn(u(xi)− u(yj)). Then for any ε, ε′ ≥ 0 with ε+ ε′ > 0,

σ(u(xi) + µ ε, u(yj)− µ ε′) > σ(u(xi), u(yj)).

2. Diminishing sensitivity. Let u(xi), u(yj) ≥ 0. Then for any ε > 0,

σ(u(xi) + ε, u(yj) + ε) < σ(u(xi), u(yj)).

3. Reflection. For any u(xi), u(yj), u(xk), u(yl) ≥ 0, we have

σ(u(xi), u(yj)) < σ(u(xk), u(yl))

if and only if σ(−u(xi),−u(yj)) < σ(−u(xk),−u(yl)).

We say that a state sij is the more salient the larger its salience value σ(u(xi), u(yj)) is.
Thus, the ordering property implies that a state is the more salient the more the lotteries’
payoffs in this state differ.2 In this sense ordering captures the contrast effect, according
to which a large difference in outcomes within a given state attracts a decision-maker’s
attention.3 Diminishing sensitivity reflects Weber’s law of perception and implies that the

2In Appendix A.1 we provide a novel, equivalent definition of the ordering property that is based on the
partial derivatives of the salience function (see Lemma 2).

3If we fix one argument of the salience function, then the ordering property is equivalent to the contrast
effect; that is, the salience of a state increases if and only if the difference in values in this state increases.
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salience of a state decreases if the outcomes’ values uniformly increase in absolute terms.
Hence diminishing sensitivity captures the level effect according to which a given contrast
in the value of outcomes is more salient for lower outcome levels. Instead of the terms
ordering and diminishing sensitivity, we will mainly use the more intuitive notions of
contrast and level effects. Throughout the paper, we use σβ,θ(x, y) := β(x−y)2

(|x|+|y|+θ)2 for some
β, θ > 0 as our leading example of a parametric salience function.

Following the smooth salience characterization proposed in Bordalo et al. (2012, page
1255), each state sij receives the salience weight ∆−σ(u(xi),u(yj)) for some salience function
σ(·, ·) and some constant ∆ ∈ (0, 1] that captures an agent’s susceptibility to salience. A
rational decision-maker is captured by ∆ = 1, while the smaller ∆ is, the stronger the
salience bias is. We call an agent with ∆ < 1 a salient thinker.

Definition 1. A salient thinker’s decision utility U s(·) for Lx ∈ {Lx, Ly} is given by

U s(Lx) =
∑
sij∈S

πij u(xi) ·
∆−σ(u(xi),u(yj))∑

sij∈S πij ∆−σ(u(xi),u(yj))
.

This gives the decision utility according to the continuousmodel proposed by BGS, where
the normalization factor in the denominator ensures that the distorted probabilities sum
up to one. Note that for safe options c ∈ R, we have U s(c) = U(c) = u(c). Hence, the
normalization ensures that a salient thinker’s valuation for a safe option c is undistorted,
irrespective of the composition of the choice set.

Importantly, the results that we derive in this paper (except for Prediction 2) do not
hinge on the assumptions specific to the preceding saliencemodel, but hold for the broader
class ofmodels that exhibit contrast effects. We can relax, for instance, the assumption that
agents evaluate lotteries based on the objective state space. Indeed, our results would be
identical if the salient thinker considers a subset of the state space as long as each out-
come of each option is included in (at least) one of this subset’s states (see, for instance,
the model variant proposed in Dertwinkel-Kalt and Köster, 2015). This is due to the fact
that our analysis builds only on choices between a lottery and a safe option. In Appendix
B, we further present the analogous results for the closely related focusing model (KS).
According to focusing, an agent’s attention directed to a given state is determined through
a focusing function (i.e., the pendant to the salience function) that satisfies the contrast,
but not the level effect. Only Prediction 2 does not rely on the contrast effect, but instead
builds on diminishing sensitivity, and is therefore specific to the salience model.

3 Certainty Equivalents and Monotonicity

Models of choice under risk should specify a unique certainty equivalent for any lottery in
order to ensure that a lottery’s evaluation is well-defined. Certainty equivalents are typi-
cally required to satisfy the axiom ofmonotonicity according towhich a lottery’s certainty
equivalent increases if either probability mass is shifted toward more favorable outcomes
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or if some outcomes increase. We precisely define these properties as follows.

Definition 2. Let L := (x1, p1; . . . ;xn, pn) denote some lottery with xi ∈ R for all 1 ≤ i ≤ n.
Outcomes are ordered such that x1 < . . . < xn, and probabilities p1, . . . , pn sum up to one.

(a) The certainty equivalent is defined as the minimum monetary sum c that makes a salient
thinker indifferent between taking lottery L and getting c for sure. Formally, suppose an
agent faces some choice set {L, c} comprising a lottery L and a safe option c. Then c is the
certainty equivalent to lottery L if and only if U s(L) = U s(c) .

(b) Denote L′ := (x1, p
′
1; . . . ;xn, p

′
n) where p′i = pi+ε and p′l = pl−ε for some i > l and some

0 < ε ≤ pl and p′k = pk for all k 6= i, l. Suppose that c denotes the certainty equivalent to
L and c′ denotes the certainty equivalent to L′. The certainty equivalent is monotonic in
probabilities if and only if c′ > c.

(c) Denote L′′ := (x′′1, p1; . . . ;x
′′
n, pn) where x′′l > xl for some l ∈ {1, . . . , n} and x′′k = xk for

all k 6= l. Suppose that c denotes the certainty equivalent to L and c′′ denotes the certainty
equivalent toL′′. The certainty equivalent is monotonic in outcomes if and only if c′′ > c.

Kontek (2016) establishes that in the discrete salience model certainty equivalents do
not satisfy monotonicity in probabilities and may not even exist. We will show that these
observations are artefacts of the simplified, discrete salience model that Kontek analyzes.
Here, the objective probability of the ith most salient state is discounted via a factor δi+1

for some salience-parameter δ < 1. Therefore, a change in the salience ranking of states
induces a discontinuous jump in a salient thinker’s valuation for a given lottery. As a con-
sequence, for some lotteries a certainty equivalent may not exist. In addition, for lotteries
with more than two outcomes, monotonicity in probabilities may be violated if probabil-
ity mass is shifted from a low, salient outcome to a larger, but less salient outcome that is
strongly discounted.

In order to illustrate why in the discrete salience model for some lotteries a certainty
equivalent does not exist, consider the binary lottery that pays $1 with probability p and
$0 with probability 1−p. If the lottery’s upside of winning $1 is unlikely (i.e., p is small), a
certainty equivalent—being close to the lottery’s downside of winning $0—exists. Here,
the lottery’s upside is salient. If p increases gradually, the certainty equivalent increases
likewise, which implies that the lottery’s upside becomes less and its downside becomes
more salient. Note, however, that this does not alter the salience weights as long as the
salience ranking remains the same (i.e., the upside is still more salient than the down-
side). There also is some probability p̂ for which a certainty equivalent exists and the
lottery’s up- and downside are equally salient. According to the discrete salience model,
a salient thinker’s valuation for the above lottery drops discontinuously at p = p̂ because
for smaller p the lottery’s upside is salient, and its probability is overweighted. Hence,
there exists some ε > 0 such that for any p ∈ [p̂− ε, p̂) no certainty equivalent exists (for a
formal analysis, see Kontek, 2016).
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BGS apply the simplified, discrete version of their model for analytical ease when
the continuous model could be expected to yield identical predictions. In contrast, the
above counterintuitive properties of the certainty equivalent rely on the use of the discrete
model. We resolve the issues of non-existing and non-monotonic certainty equivalents by
investigating the more involved continuous salience model proposed in the previous sec-
tion. First, we show that given continuous salience distortions each binary lottery has a
unique certainty equivalent, which also satisfies monotonicity in probabilities and out-
comes. Second, we generalize our findings toward lotteries with finitely many outcomes.

Binary lotteries. Suppose an agent faces a choice set {L, c}where L := (x1, p;x2, 1− p)
is a binary lottery with x2 > x1 and c denotes the option that pays an amount of c ∈ R
with certainty. Then, lottery L is (weakly) preferred over the safe option c if and only if

U s(c) ≤ U s(L) =
u(x1) p ∆−σ(u(x1),u(c)) + u(x2) (1− p) ∆−σ(u(x2),u(c))

p ∆−σ(u(x1),u(c)) + (1− p) ∆−σ(u(x2),u(c))
=: f(c),

while the safe option c is a salient thinker’s certainty equivalent to lottery L if and only if

c = u−1 (f(c)) .

For p = 0 the certainty equivalent is given by c = u−1(u(x2)) = x2 while for p = 1 it
is equal to c = u−1(u(x1)) = x1. We conclude that the certainty equivalent—given it
exists—lies between x1 and x2 for any p ∈ (0, 1) because u−1(·) is strictly increasing and
U s(L) is a convex combination of u(x1) and u(x2). Then,

u−1 ◦ f : [x1, x2]→ [x1, x2], c 7→ u−1(f(c))

is a well-defined continuous function on a closed, convex set which has—by Brouwer’s
fixed-point theorem—a fixed point. By the ordering property, σ(u(x1), u(c)) strictly in-
creases in c, while σ(u(x2), u(c)) strictly decreases in c. It follows that f(c) strictly de-
creases in c, so that the certainty equivalent is unique. Thus, for any p ∈ [0, 1] a well-
defined certainty equivalent c exists.

In order to verify monotonicity in probabilities and outcomes, we define

h(x1, x2, p, c) := u−1(f(c))− c

where c = c(x1, x2, p) denotes the unique certainty equivalent to lottery L. As ordering
implies that σ(u(x1), u(c)) strictly decreases in x1 and σ(u(x2), u(c)) strictly increases in
x2, we obtain that f(c) strictly increases in xk for k ∈ {1, 2}. Remembering that f(c) strictly
decreases in c, we have

∂h(x1, x2, p, c)

∂c
< 0 and ∂h(x1, x2, p, c)

∂xk
> 0, k ∈ {1, 2}.
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In addition, straightforward computations show that

∂h(x1, x2, p, c)

∂p
= u′ (f(c))−1︸ ︷︷ ︸

>0

·
(
−∆1∆2(u(x2)− u(x1))

(p∆1 + (1− p)∆2)2

)
︸ ︷︷ ︸

<0

< 0,

where ∆k := ∆−σ(u(xk),u(c)) for k ∈ {1, 2}. The implicit function theorem then yields

∂c

∂p
= −

∂
∂ph(x1, x2, p, c)

∂
∂ch(x1, x2, p, c)

< 0 and ∂c

∂xk
= −

∂
∂xk

h(x1, x2, p, c)

∂
∂ch(x1, x2, p, c)

> 0, k ∈ {1, 2}.

Hence a salient thinker’s certainty equivalent to any binary lottery is well-defined and
monotonic in probabilities and outcomes.

Lotteries with finitely many outcomes. We extend our preceding analysis and show
that also for a general, discrete lottery L := (x1, p1; . . . ;xn, pn) with n ≥ 2 pairwisely
distinct outcomes, a certainty equivalent exists and is well-defined. Consider again some
choice set {L, c}, where option c gives the monetary outcome c with certainty. A salient
thinker (weakly) prefers lottery L to the safe option c if and only if

U s(c) ≤ U s(L) =

∑n
i=1 pi u(xi)∆

−σ(u(xi),u(c))∑n
i=1 pi ∆−σ(u(xi),u(c))

=: f(c).

Without loss of generality, we label outcomes such that x1 < . . . < xn. A salient thinker’s
certainty equivalent to lottery L is implicitly given by c = u−1(f(c)). By the same argu-
ments as in the case of a binary lottery, the continuous function u−1◦f : [x1, xn]→ [x1, xn]

has at least one fixed point due to Brouwer’s fixed-point theorem, and we obtain the fol-
lowing proposition.

Proposition 1 (Certainty equivalent to a discrete lottery). A salient thinker’s certainty equiv-
alent to a lottery with n ≥ 2 outcomes is unique and monotonic in outcomes and probabilities.

For a given lottery L, we can now define a salient thinker’s risk premium r as the differ-
ence in the lottery’s expected value E[L] and its certainty equivalent c, that is r := E[L]−c.
Given Proposition 1, a salient thinker’s risk premium for lottery L is well-defined. In the
next section, we will investigate a salient thinker’s risk preferences by determining the
size and the sign of her risk premium.

4 Risk Attitudes and Skewness Preferences

In this section, we investigate how salience distortions shape risk attitudes by analyzing
under which conditions a salient thinker prefers a lottery over a safe option that pays the
lottery’s expected value. In Section 4.1, we show that salient thinkers are risk-averse with
respect to sufficiently left-skewed lotteries and risk-seeking with respect to sufficiently
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right-skewed lotteries. This observation can explain, for instance, the simultaneous de-
mand for insurance and casino gambling. We thereby extend findings by BGS (see their
Section IV) to the continuous saliencemodel. In Section 4.2, we precisely show that salient
thinkers exhibit a preference for skewness. Importantly, we restrict our analysis to binary
lotteries since these are uniquely characterized by their first three standardized central
moments: expected value, variance, and skewness. While for general lotteries different
notions of skewness exist, only for binary gambles skewness is unambigously defined (see
Ebert, 2015). Thus, using binary risks, we can precisely analyze a salient thinker’s prefer-
ence over the skewness of lotteries. We relate our findings to the experimental literature
on skewness preferences, and derive further testable predictions.

4.1 Stylized Facts on Skewness Preferences

Suppose a decision-maker decides whether to buy some binary lottery L at its fair price.
Formally, the decision-maker faces the choice set {L,E[L]}where L := (x1, p;x2, 1− p) is
a binary lottery with outcomes x2 > x1, and an expected value E[L] := p ·x1 + (1− p) ·x2.
We refer to E[L] as the actuarially fair price of lottery L. In order to deal with indifference,
we say that the decision-maker buys the lottery at its fair price if and only if she strictly
prefers the risky option L over the safe option E[L].

In line with BGS, we assume in this section a linear value function u(x) = x.4 Under
this assumption, a salient thinker chooses the safe option over the lottery if and only if

p · x1 + (1− p) · x2 ≥
p · x1 ·∆−σ(x1,E[L]) + (1− p) · x2 ·∆−σ(x2,E[L])

p ·∆−σ(x1,E[L]) + (1− p) ·∆−σ(x2,E[L])
.

Rearranging this inequality gives ∆−σ(x1,E[L]) ≥ ∆−σ(x2,E[L]), or, equivalently,

σ(x1,E[L]) ≥ σ(x2,E[L]).

Thus, whenever the lottery’s downside x1 is weakly more salient than its upside x2, the
agent behaves as if she was risk-averse, and chooses the safe option; otherwise, the agent
opts for the risky lottery. This highlights a crucial difference in probability weighting
under salience and cumulative prospect theory. While the CPT agent overweights small
probabilities independent of the corresponding outcome’s size, the salient thinker inflates
decision weights on salient outcomes.

On the one hand, salience distortions can induce risk-averse behavior. For illustrative
reasons, let x1 ≥ 0 and p ≤ 1/2. This immediately implies E[L]− x1 ≥ x2 − E[L]; that is,
the contrast in the downside payoff and expected value exceeds the contrast in the upside

4In contrast to EUT, salience theory does not have to assume a curved value function in order to generate
risk-averse or risk-seeking behavior. As salience distortions suffice to generate different risk attitudes, the use
of a linear value function is justified (Bordalo et al., 2012).
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payoff and expected value. Thus, we obtain

σ(x1,E[L]) > σ(E[L],E[L] + E[L]− x1)

≥ σ(E[L],E[L] + x2 − E[L])

= σ(x2,E[L]),

where the first inequality follows from diminishing sensitivity, the second one from or-
dering, and the final equality from symmetry. We conclude that a salient thinker behaves
risk-averse if a non-negative downside payoff is (weakly) less likely than the upside payoff.

On the other hand, a salient thinker sometimes behaves as if she was risk-seeking.
As before, suppose x1 ≥ 0. If the lottery’s upside is unlikely but large compared to its
expected value, the salient thinker might buy the lottery at its fair price. In fact, we can
construct a binary lotterywith a salient upside so that the salient thinker goes for the risky
instead of the safe option. The ordering property implies

lim
p→1

σ(x2,E[L]) = σ(x2, x1) > σ(x1, x1) = lim
p→1

σ(x1,E[L]).

Hence, since the salience function is continuous, there exists some p̂ = p̂(x1, x2) ∈ (1/2, 1)

such that for any p > p̂ the lottery’s upside is salient, and the salient thinker chooses
the risky option. Due to diminishing sensitivity, a salient thinker behaves as if she was
risk-seeking only if the lottery’s upside occurs with a strictly lower probability than its
non-negative downside. More generally, we obtain the following proposition.

Proposition 2 (Risk attitudes). Suppose a salient thinker chooses between the binary lottery
L := (x1, p;x2, 1− p) and the safe option that pays the lottery’s expected value. Then, there exists
some value p̂ = p̂(x1, x2) ∈ (0, 1) such that she chooses the safe option if and only if p ≤ p̂.

A straightforward implication of the preceding proposition is that the salience ap-
proach accounts for the fourfold pattern of risk attitudes (Tversky and Kahneman, 1992).
Specifically, a bunch of experimental evidence suggests that people are typically risk-
seeking (risk-averse) over low-probability gains (losses), and risk-averse (risk-seeking)
over high-probability gains (losses).5

Corollary 1 (Fourfold-pattern of risk attitudes).

(a) If x2 > x1 ≥ 0, then p̂ > 1
2 .

(b) If 0 ≥ x2 > x1, then p̂ < 1
2 .

Next, we relate a salient thinker’s risk attitude to a lottery’s skewness. Ebert (2015)
defines the skewness of a binary lottery as its third, standardized central moment

S(L) := E

( L− E[L]√
V ar(L)

)3
 =

2p− 1√
p(1− p)

(1)

5BGS derive a similar result for the discrete salience model.
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where V ar(L) := p(1 − p)(x2 − x1)
2 denotes the variance of lottery L. Other notions

of skewness refer to “long and lean” tails of the risk’s probability distribution. Indeed
there exist several measures of skewness, which are, however, all equivalent for binary
risks (Ebert, 2015, Proposition 2). Thus, only for binary lotteries the impact of skewness
on a decision-maker’s risk attitude can be unambiguously assessed. In the following,
we adopt the short, intuitive notion of skewness which refers to the probability that the
lottery’s downside payoff is realized.

Definition 3 (Skewness of binary risks). Consider two binary lotteries Lx := (x1, p;x2, 1−p)
and Ly := (y1, q; y2, 1 − q) with x2 > x1 and y2 > y1. We say that Lx is more (less, equally)
skewed than Ly if and only if p > q (p < q, p = q). Lottery Lx is called right-skewed if p > 1

2 ,
left-skewed if p < 1

2 , and symmetric otherwise.

From Equation (1) it is straightforward to see that S < 0 for any left-skewed lottery,
S > 0 for any right-skewed lottery, and S = 0 for any symmetric lottery. Therefore, we
also say that a left-skewed (right-skewed) lottery is negatively (positively) skewed, and that
a lottery is the more skewed the larger S is.

The distribution of various downside risks such as car accidents or natural disasters
is typically left-skewed: these events are rare, but if they happen they are severe. In this
context, optionE[L]may reflect a fair-priced insurance contract against the downside risk.
The distribution of casino gambling, or lottery games, on the other hand, is typically right-
skewed: gains are large, but occur rarely. Here, option E[L] can be interpreted as the fair
price to bet on an upside risk.

The finding that agents seek right-skewed risks but tend to avoid left-skewed risks is
established in the literature as skewness preferences. A tendency to choose right-skewed
risks has been observed by Golec and Tamarkin (1998) with respect to horse-race betting,
byGarrett and Sobel (1999) in the context of lottery games, and in several studies on invest-
ment behavior (Boyer et al., 2010; Bali et al., 2011; Green and Hwang, 2012; Conrad et al.,
2013). At the same time, consumers insure against left-skewed risks as demonstrated by
Sydnor (2010) and Barseghyan et al. (2013) who analyze deductible choices in auto and
home insurance contracts. The following stylized examples illustrate that salience theory
can account for this empirical evidence.6

Example 1 (Insurance). Suppose the agent has to decide whether to pay the fair insur-
ance premium in order to avoid a binary risk L. In a typical insurance example, the risky
option yields a large loss (i.e., x1 < 0) with a small probability and zero payoff (i.e., x2 = 0)
otherwise. Then, according to Proposition 2, a salient thinker buys the insurance if the
probability of the loss is sufficiently small.

6Notably, salience theory can also explain the demand for small scale insurance, e.g. insurance for con-
sumption goods such as TVs or smartphones, where the potential loss is high relative to the insurance pre-
mium but not large overall. Cicchetti and Dubin (1994), for instance, report that many consumers pay a
substantial premium in order to avoid the small risk (less than one percent) of having to pay $55 for repair in
case their internal telephone wiring breaks down.
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Example 2 (Gambling). Suppose the agent decides whether to buy a lottery ticket at
its fair price. When participating in the lottery, she could win either a large amount (i.e.,
x2 > 0) or nothing (i.e., x1 = 0). The salient thinker might prefer the gamble, but due to
diminishing sensitivity only if the risk is right-skewed. According to Proposition 2, the
salient thinker buys the lottery ticket if the probability of the gain is sufficiently small.

Example 3 (Investments). Suppose the agent decides whether to buy an asset—that ei-
ther pays x1 < 0 or x2 > 0 in the future—at its fair price. If the probability of the gain
is sufficiently high, the downside payoff x1 stands out and the salient thinker does not
invest in the asset. If the probability of the loss is high, the upside payoff x2 is salient, and
the decision-maker buys the asset at its fair price. As Bordalo et al. (2013a) have already
pointed out, this implies a tendency to buy right-skewed assets.7

4.2 Salience and Skewness Preferences

In line with the presented empirical evidence, salience theory suggests that the skew-
ness of a risk’s probability distribution affects an agent’s attitude toward risk. Most field
studies, however, do not precisely test for the role of skewness in risk-taking since the
variance and skewness of typical casino gambles or lottery games are not independent,
but are highly correlated. Thus, risk and skewness preferences cannot be disentangled.
Ebert (2015) argues, for instance, that inferring skewness preferences at the horse track
from the study by Golec and Tamarkin (1998) might be misleading. In fact, increasing the
skewness of a stylized horse race betL = (1/p, p; 0, 1−p), while holding its expected value
and variance (i.e., the corresponding risk) constant, does not yield a new horse race bet,
but a lottery with very different properties. Ebert (2015) concludes that “a choice between
two horse-race bets is never a choice between different levels of skewness only.” Indeed,
for any given outcomes x1 and x2 a change in the lottery’s probability distribution induces
a change in its expected value E[L] and variance V ar(L). As a consequence, we cannot
infer from Proposition 2 whether it is solely the skewness of a risk that induces a salient
thinker’s aversion toward left-skewed and her preference for right-skewed lotteries. In
order to disentangle a salient thinker’s preference for skewness from her preference for
risk, a lottery’s skewness needs to be varied for a fixed expected value and variance.

Lemma 1 (Ebert’s moment characterization of binary risks). For constants E ∈ R, V ∈ R+

and S ∈ R, there exists exactly one binary lottery L = (x1, p;x2, 1 − p) with x2 > x1 such that
E[L] = E, V ar(L) = V and S(L) = S. Its parameters are given by

x1 = E −

√
V (1− p)

p
, x2 = E +

√
V p

1− p
, and p =

1

2
+

S

2
√

4 + S2
. (2)

7While Bordalo et al. (2013a) state that salience predicts a “taste for skewness” in the context of asset
choices, we will precisely disentangle a salient thinker’s preferences for risk and skewness. Thereby, we are
the first to formally derive a salient thinker’s preference for skewness.
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For a proof of Lemma 1 see Ebert (2015). In the following, we will refer to the unique
binary lottery that has expected valueE, variance V , and skewness S asL(E, V, S). Using
the above moment characterization of binary risks, we can assess the impact of skewness
on a salient thinker’s risk attitude. As before, we assume a linear value function u(x) = x

so that the salient thinker’s risk premium for the binary lottery L(E, V, S) equals

r(E, V, S) =
√
V p(1− p) ·

(
∆−σ(x1,E) −∆−σ(x2,E)

p∆−σ(x1,E) + (1− p)∆−σ(x2,E)

)
, (3)

where outcomes xk = xk(E, V, S), k ∈ {1, 2}, and probability p = p(S) are defined in
Equation (2). A salient thinker strictly prefers the risky option L(E, V, S) over the safe
option E if and only if the lottery’s risk premium is strictly negative, or, equivalently, its
upside payoff is salient.

Proposition 3 (Skewness preferences). For a given expected value E and variance V , there
exists a unique skewness value Ŝ = Ŝ(E, V ) ∈ R such that r(E, V, Ŝ) = 0. A salient thinker
strictly prefers the binary lottery L(E, V, S) over its expected value E if and only if S > Ŝ.

Suppose the lottery’s expected value and variance are fixed. Then, by Equation (2),
increasing the lottery’s skewness S increases the probability that its downside payoff is
realized. If the lottery’s downside payoff becomes more likely, the difference between
its upside payoff and the expected value increases, thereby making the lottery’s upside
more salient. At the same time, the difference between the downside payoff and the
expected value decreases so that the lottery’s downside becomes less salient. Hence, a
salient thinker is the more likely to take a binary risk the more skewed this risk is.8 By
continuity of the salience function we obtain the following corollary.

Corollary 2. For a given expected valueE and variance V , there exists a sufficiently skewed binary
lottery for which a salient thinker is willing to pay more than its fair price E.

As the salience function is bounded, we further conclude from Equation (3) that the
risk premiumconverges to zero if the lottery’s skewness becomes arbitrarily large or small.

Corollary 3. For any expected value E and variance V , we have limS→±∞ r(E, V, S) = 0.

Skewness preferences and the contrast effect. Intuitively, in the salience model, skew-
ness preferences are driven by the contrast effect. The stronger the contrast effect is, the
more pronounced is a large difference between a lottery’s payoff and its expected value.
For a positively skewed lottery, the upside payoff differs by more from the expected value
than the downside payoff, while the opposite holds for a negatively skewed lottery. There-
fore, if the contrast effect becomes stronger, a salient thinker’s preference for positive
skewness is enhanced. We formalize this idea as follows.

8In principle, also EUT could explain skewness preferences. In order tomatch evidence on risk-averse be-
havior, however, EUT needs to assume a concave value function. Under this assumption EUT cannot explain
why individuals seek right-skewed but avoid left-skewed risks.
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Definition 4. We say that the contrast effect is stronger for salience function σ than for salience
function σ̂ if for any y ∈ R the difference σ(x, y)− σ̂(x, y) is increasing in |x− y|.

The contrast between two values is typically measured by their difference. In this
sense, the preceding definition captures the intuitive notion that the contrast effect is
stronger for one salience function than another if their difference (i.e., the difference in
salience values) increases in the difference of their arguments.

Proposition 4 (Contrast and skewness preferences). Let the contrast effect be stronger for
salience function σ than for salience function σ̂. Then, a salient thinker’s risk premium r(E, V, S)

is larger for σ than for σ̂ if and only if the lottery is left-skewed.

This suggests that a stronger contrast effect enhances a salient thinker’s aversion to-
ward left-skewed risks and her preference for right-skewed risks. More precisely, the
preceding proposition implies that the skewness threshold Ŝ defined in Proposition 3 lies
the closer to zero the stronger the contrast effect is. Since we derive the preference for
skewness from lotteries with the same expected value, the salience function’s second ar-
gument is held fixed so that the contrast effect is equivalent to the ordering property in
this context. In other words, a salient thinker’s preference for skewness is the stronger the
more important ordering is relative to diminishing sensitivity.

Since a model of focusing (KS) also builds on the contrast effect, it shares all of our
central results on skewness preferences (see Appendix B for a formal proof). In contrast,
the model of relative thinking by Bushong et al. (2016), which builds on the setup by KS,
but assumes reverse contrast effects (i.e., attention assigned to a state decreases in the
range of payoffs in this state), cannot account for skewness preferences.

Experimental evidence on skewness preferences. Ourpreceding results are in linewith
experimental evidence on skewness-seeking choices. In contrast to studieswith field data,
laboratory experiments allow us to precisely test for a subject’s preference for positive
skewness (i.e., the skewness of a lottery can be varied ceteris paribus). Ebert and Wiesen
(2011) find that a majority of subjects chooses a right-skewed over a left-skewed binary
lottery with the same expected value and variance.9 Ebert (2015) confirms this preference
for right-skewed over left-skewed binary risks. In addition, he observes that a majority of
subjects who have to choose between a symmetric and a right-skewed lottery, which has
the same expected value and variance, opt for the more skewed alternative. If the choice
is between a symmetric and a left-skewed lottery, subjects tend to avoid the left-skewed
risk, thereby again choosing the more skewed lottery. Further studies using binary (e.g.,

9More precisely, subjects have to choose between two binary lotteries that form a Mao pair (Mao, 1970).
For any p ∈ (0, 1/2), two perfectly correlated, binary lotteriesLx := (x1, p;x2, 1−p) andLy := (y1, 1−p; y2, p)
form a Mao pair if both have the same expected value and variance. The lotteries of a Mao pair differ only in
their skewness (Ebert andWiesen, 2011). Lottery Lx is left-skewed (i.e., its high payoff x2 occurs with a high
probability), while lottery Ly is right-skewed (i.e., its high payoff y2 occurs with a small probability). In line
with Definition 3, Ebert and Wiesen (2011) state that “an individual is said to be skewness seeking if, for any
given Mao pair, she prefers Ly over Lx.” In Appendix C we prove that, for any Mao pair, a salient thinker
prefers Ly over Lx.
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Brünner et al., 2011) ormore complex lotteries (e.g., Grossman and Eckel, 2015) report sim-
ilar results on skewness-seeking choices. In line with Proposition 3, Åstebro et al. (2015)
observe that subjects tend tomake riskier decisions if the choice set includes right-skewed
lotteries. Altogether, a substantial body of research documents skewness-seeking choices
under controlled conditions in the laboratory.

Notably, none of the existing laboratory studies has explicitly tested our main predic-
tion that arises from Proposition 3. According to the salience approach, there exists a
certain threshold value Ŝ so that a subject prefers a binary lottery over its expected value
if and only if the lottery’s skewness exceeds this threshold value. This prediction is novel,
and experimentally testable:10 in detail, fix some expected value E and some variance V .
Let subjects choose repeatedly between the safe option paying E and the binary lottery
L(E, V, S), where the lottery’s skewnessS is gradually increased. We hypothesize that the
subjects’ choices are monotonic in the sense that a subject should opt for the safe option
if the lottery’s skewness falls below a certain threshold, and for the lottery otherwise.

Prediction 1 (Skewness preferences).

(a) Suppose S′ < S. If a subject chooses E from the set {L(E, V, S), E}, she also chooses E
from the set {L(E, V, S′), E}.

(b) Suppose S′′ > S. If a subject chooses L(E, V, S) from the set {L(E, V, S), E}, she also
chooses L(E, V, S′′) from the set {L(E, V, S′′), E}.

While Prediction 1 relates to a within-subjects design, the predictions for a between-
subjects experiment are straightforward. As the threshold value defined in Proposition 3
depends on the curvature of the salience function, it will arguably vary across subjects.
Then, Prediction 1 implies that the share of subjects choosing the binary lotteryL(E, V, S)

over its expected value E monotonically increases in the lottery’s skewness S.
If we imposemore structure on the salience function, we can derive further experimen-

tally testable predictions. In order to predict how subjects’ choices depend on the lottery’s
expected value, for instance, we have to be more precise on how the relative importance
of the contrast and level effects vary with the payoff level.

Definition 5 (Decreasing diminishing sensitivity). A salience function satisfies decreasing
diminishing sensitivity if and only if, for any values x, y, z > 0 such that x ≥ z and σ(x −
z, x) ≥ σ(x+y, x), the differences σ(x−z, x)−σ(x+y, x) and σ(−x+z,−x)−σ(−x−y,−x)

are strictly decreasing functions in x.

A salience function satisfies decreasing diminishing sensitivity if the level effect be-
comes weaker as the lottery’s payoffs increase in absolute terms. Accordingly, diminish-
ing sensitivity is more important at low rather than high payoff levels. As we delineate

10BGS as well as Frydman and Mormann (2017) conduct related experiments, but simultaneously vary
the lottery’s variance and skewness. Hence, these experiments do not test our novel prediction on salience-
induced skewness preferences.
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in Appendix A.3, a wide class of salience functions—to the best of our knowledge, any
salience function that has been proposed in the literature—satisfies decreasing diminish-
ing sensitivity. This property allows us to make the following prediction.

Prediction 2 (Level-dependent skewness preferences).

(a) Suppose E′ < E (E′ > E). If a subject chooses E from the set {L(E, V, S), E} and the
lottery’s payoffs are positive (negative), she also chooses E′ from the set {L(E′, V, S), E′}.

(b) Suppose E′′ > E (E′′ < E). If a subject chooses L(E, V, S) from {L(E, V, S), E} and the
lottery’s payoffs are positive (negative), she chooses L(E′′, V, S) from {L(E′′, V, S), E′′}.

The preceding prediction states that a binary lottery with positive payoffs becomes
the more attractive the larger its expected value is. If the expected value and therefore
the payoff level increases, diminishing sensitivity becomes weaker, the contrast effect be-
comes relatively more important, and an agent’s preference for right-skewed lotteries is
enhanced. Our salience approach therefore predicts that the share of subjects choosing
the risky option increases in the lottery’s expected value. Whilewe are the first to formally
derive this prediction, it has been experimentally confirmed in a recent study by Frydman
andMormann (2016, Table II.A).11 The prediction for lotteries with negative payoffs is re-
versed, and has not been tested yet. Formally, Prediction 2 follows from Proposition 7 that
is proven in Appendix A.3.

Finally, Corollary 3 yields another testable implication: for any expected value E and
variance V , there exists a certain skewness level such that beyond this level the lottery’s
certainty equivalent decreases in the lottery’s skewness. Specifically, the certainty equiv-
alent to L(E, V, S) approaches the lottery’s expected value E if the lottery’s skewness S
becomes arbitrarily large. This gives rise to the following prediction.

Prediction 3 (Limits of skewness preferences). Consider choice set {L(E, V, S), E + ε} for
some ε > 0. There exists some skewness value S̃ ∈ R such that for any S ≥ S̃ the subject chooses
E + ε over L(E, V, S).

Importantly, all predictions carry over to the case where only a share of subjects has a
linear value function. As we will delineate in the following section, some subjects might
have a concave value function, and might therefore never choose a binary lottery (with
positive payoffs) over its expected value. In this case all predictions continue to hold: first,
those subjects that reveal a linear or close-to-linear value function accord with Prediction
1, while the remaining subjects should always go for the safe option. Second, Prediction
2 should hold as long as the third derivative of the value function is not too negative.12

11Unfortunately, the authors do not report these results anymore in their new working paper version
(Frydman and Mormann, 2017).

12Otherwise, if the lottery’s expected value increases, its payoffs fall in a range where the value function
is much more concave and where the decision-maker is therefore intrinsically much more risk-averse. This
effect may countervail the illustrated salience effect so that the lottery may become less attractive due to the
increase in its expected value.
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Third, Prediction 3 holds for any decision-maker with a (weakly) concave value function.
Thus, our predictions are robust to the assumption of heterogeneous agents who differ
in the shape of their value functions (i.e., with respect to their degree of intrinsic risk
aversion).

The preceding predictions further allow us to test the fundamental assumptions of
the salience model. Prediction 1 is driven by the ordering property and the contrast effect
(that also the focusingmodel includes), while Prediction 2 is an implication of diminishing
sensitivity and the level effect (that is specific to the salience model). As a consequence,
the predictions above are not only valuable in order to test the predictive power of the
salience and focusingmodelswith respect to skewness preferences, but also to distinguish
between these different approaches to stimulus-driven attention.

5 Puzzles on Skewness Preferences

In many respects, the predictions by salience theory of choice under risk coincide with
the predictions by cumulative prospect theory (for a detailed discussion, see BGS). For
instance, both theories predict that whether an agent buys insurance or prefers to gam-
ble depends on the skewness of the risk’s underlying probability distribution. As shown
by three articles, however, cumulative prospect theory yields unreasonably strong pre-
dictions on the impact of skewness on risk-taking. On the one hand, Ebert and Strack
(2015) argue that for any value function, there exists a right-skewed and arbitrarily small
binary risk with a negative expected value that is attractive to a CPT agent. This results
in unrealistic predictions for dynamic investment or gambling decisions. On the other
hand, Rieger and Wang (2006) as well as Azevedo and Gottlieb (2012) delineate that un-
der “virtually all functional forms that have been proposed in the literature” (Azevedo
and Gottlieb, 2012, page 1294) an CPT-agent’s willingness to pay for a binary lottery with
a fixed expected value is unbounded (i.e., it becomes arbitrarily large if the lottery’s upside
payoff becomes arbitrarily large). In the following, we will compare salience and cumula-
tive prospect theory’s predictions on skewness preferences in the small (Ebert and Strack,
2015) and in the large (Rieger and Wang, 2006; Azevedo and Gottlieb, 2012).

5.1 Skewness Preferences in the Small

Consider a dynamic setup where a decision-maker gambles according to the following
strategy: she decides to start gambling, but will stop as soon as she has realized either
a rather small loss x1 or a large gain x2. This stopping strategy with two absorbing end-
points can be represented as a binary lottery that gives a small losswith a large probability,
and a large gain with a small probability. According to Corollary 1, a salient thinker with
a linear value function is willing to paymore than the fair price to enter the corresponding
gamble if this binary risk is sufficiently skewed. If the decision-maker is naïve and cannot
commit to a long-run stopping strategy, but can revise her strategy after every single gain
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or loss, she never stops gambling as she can always construct a sufficiently skewed stop-
ping strategy that attracts her. Independent of previous gains or losses, a salient thinker
decides to gamble in every period anew and therefore continues until bankruptcy.

Likewise, CPT agents that cannot commit to a certain gambling strategy will gam-
ble “until the bitter end” (Ebert and Strack, 2015). Ebert and Strack show that without
commitment a naïve CPT agent who uses the preceding stopping strategy will never stop
gambling irrespective of her value function’s curvature.13 In particular, Ebert and Strack
(2015) verify that CPT agents reveal skewness preferences in the small; that is, sufficiently
right-skewed binary lotteries with outcomes x1 and x2 that are sufficiently small in ab-
solute terms are attractive even if these lotteries’ expected values are negative. For these
lotteries probability weighting may predominate loss aversion so that the CPT agent par-
ticipates in an unfair gamble.

While also salient thinkers might gamble until the bitter end, the lotteries which are
attractive to a salient thinker are fundamentally different. An attractive lottery’s downside
payoff should be close to the lottery’s expected value, therefore being non-salient. At
the same time, the upside payoff should be very large, thereby exceeding the expected
value by much in order to stand out and attract the decision-maker’s attention. Thus, it is
not a preference for skewness in the small that induces a salient thinker to gamble until
bankruptcy. It is a preference for lotteries with a large, outstanding upside payoff, which
we regard as the more plausible driver of taking up unfair gambles. Forrest et al. (2002)
precisely capture this intuition by stating that the purchase of a lottery ticket corresponds
to “buying a dream.” A decision-maker might dream of winning the large jackpot, which
allows her to quit her tedious job or to buy an expensive car, thereby overweighting the
probability that her dream will come true.

Cumulative prospect theory’s prediction that an agent will, irrespective of her value
function, gamble until bankruptcy has been regarded as implausible and therefore as a
weakness of the model. We will show that this prediction does not necessarily hold for
salient thinkers. In fact, it depends on the interplay of a salient thinker’s value and salience
functions whether she is inclined to gamble or not.14 Hence, in the salience model agents
with a rather linear value function may gamble until the bitter end, while those with a
strongly curved value function may not. We regard it as plausible to assume that people
are heterogeneous with respect to the curvature of their value functions since some are

13The naïve agent does not anticipate that she will not stick to her initial plan in the future. At every point
in time, she constructs a new, attractive gambling strategy with a positive skew and a negative expected
value, and continues gambling until she has lost her entire wealth. In contrast, a sophisticated agent who
cannot commit to future behavior never starts to gamble (Ebert and Strack, 2016) as she is aware of her time-
inconsistency. Hence, she foresees that if she adopts the preceding strategy, she will not follow it until the
end, but she will stop when her gains come close to the strategy’s upper stopping threshold. At this point,
following the preceding strategy represents a left-skewed gamble that the CPT agent wants to avoid. Since
the agent anticipates that she will stop too early, she decides not to gamble in the first place. Importantly, she
does not even start to gamble if the expected gains from gambling become arbitrarily large.

14The fundamentals of the salience model, that is, the value function u, the salience function σ, and the
salience parameter∆ can be estimated simultaneously from real choice data as they are not perfectly collinear.
Dertwinkel-Kalt et al. (2017a), for instance, conduct such an estimation for the closely related focusingmodel,
simultaneously estimating the value and the focusing function.
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intrinsically more risk-averse than others. Given this type of heterogeneity among agents
the salience approach predicts that only some people gamble excessively (those with a
value function that is linear or close-to-linear) while others do not.15

Static salience predictions. Suppose a salient thinker faces some choice set {L,E[L]}.
For simplicity and in line with the gambling example, let x2 > x1 ≥ 0. We relax our
previous assumption of a linear value function, and assume that the decision-maker’s
value frommoney is strictly increasing andweakly concave, that is, u′(·) > 0 andu′′(·) ≤ 0.
As before, we normalize u(0) := 0. Then, a salient thinker strictly prefers the risky lottery
L over the safe option E[L] if and only if

u(x2)− u(E[L])

u(E[L])− u(x1)
· 1− p

p
>

∆1

∆2
,

where ∆k := ∆−σ(u(xk),u(E[L])) for k ∈ {1, 2}. For any given expected value E = E[L],
substituting p = (x2 − E)/(x2 − x1) yields

u(x2)−u(E)
x2−E

u(E)−u(x1)
E−x1

>
∆1

∆2
. (C.1)

The left-hand side of this inequality constitutes the ratio of the secants’ slopes through
the points (E, u(E)) and (xk, u(xk)) for k ∈ {1, 2}, which is less or equal than one for
any weakly concave value function. The right-hand side of Inequality (C.1) gives the ratio
of the salience weights which is below one if and only if the lottery’s upside is salient.
Analogously to the previous section, we can conclude that the lottery’s downside is salient
whenever the lottery is left-skewed or symmetric.16 While there exists a right-skewed
lottery with a salient upside for any value function, it remains uncertain whether a salient
thinker buys this lottery or not.

Intuitively, one would expect that Condition (C.1) is less likely to hold if the value
function’s curvature increases since intrinsic risk aversion becomes stronger. In addition,
compared to a linear value function, the contrast between the values assigned to the lot-
tery’s upside payoff and expected value is reduced. As the preference for skewness is
driven by the contrast effect, it follows that salience distortions are weaker and therefore
less likely to induce risk-seeking behavior if the value function is concave. Indeed, the
left-hand side of Condition (C.1) decreases in the value function’s curvature; but the cor-
responding effect on the ratio of salience weights is ambiguous as it depends on how the

15Under the assumption that some people are sophisticated while others are naïve, also cumulative
prospect theory predicts heterogeneous, but implausible gambling behavior: while naïve agents gamble until
bankruptcy (Ebert and Strack, 2015), sophisticated agents do not even gamble if the expected profit becomes
arbitrarily large (Ebert and Strack, 2016). For the salience model, in contrast, heterogeneity in gambling be-
havior follows directly from the model’s fundamentals (i.e., the curvature of the value function), and results
in more plausible predictions.

16Note that u(E)− u(x1) ≥ u(x2)− u(E) for any p ≤ 1/2 due to (weak) concavity of the value function.
Then, diminishing sensitivity implies that the lottery’s downside is weakly more salient than its upside since
u(x2) > u(x1) ≥ 0 holds by assumption.
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relative importance of ordering and diminishing sensitivity change with the level of val-
ues assigned to the outcomes. Therefore, it is impossible to make a general statement on
how the value function’s curvature affects a salient thinker’s risk attitude (see Example 5
for an illustration).

More can be said about the properties of the salience function that facilitate risk-
seeking behavior. Under the assumption of a linear value function, as established in
Proposition 4, a salient thinker’s preference for right-skewed risks is driven by the contrast
effect. Intuitively, a salient thinker is especially prone to gamble (even at an unfair price)
if a large gain occurring with a small probability stands in sharp contrast to the lottery’s
expected value, thereby grabbing a great deal of attention. Hence, a salient thinker is the
more risk-seeking with respect to sufficiently right-skewed, binary lotteries the stronger
the contrast effect is relative to the level effect. In order to verify that this intuition carries
over to the case of a concave value function, we compare salience functions that differ in
the strength of the contrast effect.

Proposition 5. Let the contrast effect be stronger for salience function σ than for salience function
σ̂. If lottery L satisfies (C.1) for salience function σ̂, it also satisfies (C.1) for salience function σ.

If an agent’s value function is very concave and her salience function exhibits a weak
contrast effect, we expect that there exists no binary lottery that the agent prefers to its
expected value (i.e., Condition (C.1) is never satisfied). We show this with the use of two
examples for which we assume power utility u(x) = xα with α ∈ (0, 1) and our standard
salience function σβ,θ(x, y) with β, θ > 0. Let θ = 0.1 and ∆ = 0.7.

Example 5 (Value function). For a linear value function, the left-hand side of (C.1) equals
one, and the salient thinker chooses a lottery whenever its upside is salient. This lottery
exists by Proposition 3. Then, due to continuity, Condition (C.1) also holds for a mildly
concave value function u(x) = xα with α being close to one. Let β = 1 so that the salience
function is σβ,θ(x, y) = (x−y)2

(|x|+|y|+0.1)2
. If the value function’s curvature increases, that is,

parameter α decreases, we observe that (C.1) is less likely to hold. More specifically, nu-
merical computations show that there exists some threshold value α̂ ∈ (0, 1) such that
for any α ∈ (0, α̂) no unfair, attractive gamble exists. For α = 0.95 and α = 0.5, Figure 1
depicts the risk premium r as a function of probability p and upside payoff x2 for x1 = 1.

Example 6 (Salience function). Fix α = 3/4 so that the value function is u(x) = x3/4.
We observe that Inequality (C.1) is more likely to hold for at least some binary lottery L
if parameter β increases.17 In fact, numerical computations show that there exists some
β̂ > 1 such that for any β > β̂ at least one unfair, attractive gamble exists. For β = 1 and
β = 10, Figure 2 illustrates the risk premium r as a function of probability p and upside
payoff x2 for a given downside payoff x1 = 1.

17The larger β is the stronger is the contrast effect for salience function σβ,θ . Indeed, this holds only using
the following notion of a stronger contrast effect which is weaker than that stated in Definition 4: for any
β > β̃ and x, y, z ∈ R, we have σβ,θ(x, z)− σβ̃,θ(x, z) > σβ,θ(y, z)− σβ̃,θ(y, z) if x > y ≥ z or x < y ≤ z.
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Risk premium for α = 0.95. Risk premium for α = 0.5.

Figure 1: The above graphs show the risk premium as a function of the upside payoff x2 and the
probability p that the downside payoff x1 is realized. For α = 0.95, the risk premium becomes
negative for highly right-skewed lotteries (i.e., a large probability p on the downside payoff x1) with
a large upside payoff x2. For α = 0.5, the risk premium is non-negative for any feasible lottery.

Risk premium for β = 1. Risk premium for β = 10.

Figure 2: The above graphs show the risk premium as a function of the upside payoff x2 and the
probability p that the downside payoff x1 is realized. For β = 10, the risk premium becomes
negative for highly right-skewed lotteries (i.e., a large probability p on the downside payoff x1) with
a large upside payoff x2. For β = 1, the risk premium is non-negative for any feasible lottery.
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Comparison to the discrete salience model. For the discrete salience model there al-
ways exists an unfair, binary lottery with a salient upside that is attractive to a salient
thinker. This result is driven by the fact that for a lottery with a salient upside the right-
hand side of Inequality (C.1) simplifies to the salience-parameter δ < 1 (as introduced in
the discussion of the discrete salience model after Definition 2). Therefore, the right-hand
side of Inequality (C.1) is bounded away fromone, while its left-hand side approaches one
if the variance of lottery L goes to zero. Thus, the resolution of Ebert and Strack’s skew-
ness puzzles relies on the use of the continuous salience model.

5.2 Skewness Preferences in the Large

Rieger andWang (2006) and Azevedo and Gottlieb (2012) show that cumulative prospect
theory also yields implausible predictions on the profitability of selling right-skewed lot-
teries with large absolute payoffs. Denote L(E) as the set of all binary lotteries with ex-
pected value E ∈ R. Azevedo and Gottlieb (2012) argue that the expected profit that can
be earned by selling a lottery L ∈ L(E) to a CPT agent may be unbounded. This pre-
diction arises since the assumption of non-linear probability weighting might induce an
unbounded valuation for a lottery with a finite expected value (Rieger and Wang, 2006).
If small probabilities are overweighted, increasing a lottery’s upside payoff, and reducing
the corresponding probability can make this lottery more attractive. This allows a firm to
realize an arbitrarily large expected profit if it offers a binary lottery with an arbitrarily
large upside payoff (skewness preferences in the large).

We show that this puzzle can be resolved for salient thinkers. As before, suppose the
decision-maker has a (weakly) concave value function and faces some choice set {L, z},
where z denotes the price of lottery L. The agent buys the lottery as long as it is strictly
preferred over the monetary sum z. Since the salience function is bounded, there exists
some threshold value ∆̄ < ∞ such that ∆−σ(x,y) < ∆̄ for any (x, y) ∈ R2. The following
proposition states that for any expected value E, the price a salient thinker is willing to
pay for lottery L ∈ L(E) is bounded.

Proposition 6. A salient thinker’s valuation for any lottery L ∈ L(E) is bounded from above by
a function which is affine in E.

Suppose a firm offers a binary lottery L ∈ L(E) at some price z. Optimally, it will
set a price equal to the lottery’s certainty equivalent, which is well-defined according to
Proposition 1. Therefore, the firm will, for a given expected value E, choose to sell the
lotteryL ∈ L(E) that has the largest certainty equivalent. According to Proposition 6, this
certainty equivalent is bounded so that the expected profit a firm can earn from selling a
binary lottery with a finite expected value cannot become arbitrarily large.18

18Indeed the expected profit that can be earned from selling a lottery L ∈
⋃
E∈R L(E) is unbounded.
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6 Discussion and Conclusion

We have identified the contrast effect as a plausible driver of skewness preferences. Ac-
cordingly, when comparing a risky and a safe option, a risky outcome attracts the more
attention the more it differs from the safe option’s payoff. Thereby, the contrast effect in-
duces a focus on the large, but unlikely upside of right-skewed risks, and a focus on the
large potential loss in the case of left-skewed risks. As a consequence, salience theory
(BGS) and related approaches to local thinking that incorporate contrast effects, such as
a model of focusing (KS), predict a preference for positive skewness. In contrast, a model
of relative thinking (Bushong et al., 2016), that assumes reverse contrast effects (i.e., the
weight assigned to a risky outcome decreases in its contrast to the safe option’s payoff),
cannot account for skewness preferences.

Models of local thinking offer an explanation for skewness preferences that funda-
mentally differs from approaches previously proposed in the literature. According to
cumulative prospect theory, for instance, an agent exhibits a preference for right-skewed
lotteries because she overweights small probabilities per se. In contrast, local thinkers over-
weight a small probability only if the corresponding payoff stands out. This approach to
model non-linear probability weighting is not only psychologically sound, but also allows
for more realistic predictions. In case of a concave value function, larger payoffs are less
attractive and less attention-grabbing so that also the corresponding probabilities should
be less distorted, and salience-effects should have less impact on choices. Hence, local
thinkers with a value function that is close-to-linear or even convex exhibit strong skew-
ness preferences, and therefore gamble excessively, while local thinkers with a sufficiently
concave value function will not do so. As a consequence, local thinking in combination
with a population of heterogeneous agentswhodifferwith respect to their intrinsic risk at-
titudes allows for more plausible predictions on the magnitude of skewness preferences
than cumulative prospect theory (Rieger and Wang, 2006; Azevedo and Gottlieb, 2012;
Ebert and Strack, 2015, 2016).

Our approach has also advantages compared to other behavioral explanations for
skewness preferences such as the model on optimal expectations proposed by Brunner-
meier and Parker (2005). Here, an agent receives utility not only from her actions, but also
from her beliefs over the likelihood of favorable future outcomes. Therefore, an agent in-
flates the “perceived likelihood” of upside events in order to enhance the pleasure from
expecting these events. As a consequence, the demand for right-skewed lotteries is ex-
cessive. This model, however, yields weaker predictions on skewness preferences than
our approach (see Proposition 2 in Brunnermeier and Parker, 2005). First, Brunnermeier
and Parker explain an affection toward sufficiently right-skewed risks, but they do not
obtain precise predictions on the demand for less skewed or left-skewed assets. Second,
the puzzle investigated by Ebert and Strack (2015) cannot be resolved in their framework
as long as the value function is unbounded. Finally, utility from pleasant expectations
can be obtained only before an event is realized. Thus, it is plausible that optimal expec-
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tations matter only when there is a considerable amount of time between an investment
decision and the event realization. Models of local thinking instead can explain skewness
preferences irrespective of whether the realization of outcomes is delayed or not.

While a substantial body of evidence suggests that people like right-skewed, but avoid
left-skewed risks, we derive a novel set of predictions on skewness-dependent risk atti-
tudes that can be tested in the lab. First, models of local thinking predict that a risky
option is preferred over its expected value if and only if its skewness exceeds a certain
threshold. Second, the salience model predicts that a risky option with positive payoffs
becomes the more attractive the larger its expected value is. While the former prediction
has not been tested yet, the latter one has been confirmed in a recent experimental study
by Frydman and Mormann (2016).

Beside skewness preferences, models of local thinking can account for a wide range of
decision anomalies. In particular the salience model rationalizes empirical observations
such as the Allais paradox (Bordalo et al., 2012), decoy effects (Bordalo et al., 2013b), or
the newsvendor problem (Dertwinkel-Kalt and Köster, 2017) in one coherent framework,
thereby challenging cumulative prospect theory as themajor behavioralmodel of individ-
ual decision-making. Its assumptions have been supported both by empirical (Hastings
and Shapiro, 2013) and experimental (Dertwinkel-Kalt et al., 2017b) work. Consequently,
models of local thinking improve our understanding of when agents seek and when they
shy away from risk.
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Appendix A: Proofs

A.1: Auxiliary Result

We characterize the ordering property via the partial derivatives of the salience function.

Lemma 2. Without loss of generality assume x ≥ y. Consider a continuously differentiable
function σ : R2 → R+. Then, the following two statements are equivalent:

i) σ satisfies ordering.

ii) ∂
∂xσ(x, y) ≥ 0 ≥ ∂

∂yσ(x, y) for all (x, y) ∈ R2 and ∂
∂xσ(x, y) > 0 > ∂

∂yσ(x, y) on any
dense subset of R.

Proof. i)⇒ ii): For any ε > 0 the ordering property implies σ(x+ ε, y)−σ(x, y) > 0. Thus,
∂
∂xσ(x, y) ≥ 0 follows immediately from the definition of the partial derivative. By the
mean value theorem, there exists some ξ ∈ [x, x+ ε] such that

∂

∂x
σ(x, y)

∣∣∣∣
x=ξ

=
σ(x+ ε, y)− σ(x, y)

ε
> 0.

Hence, ∂
∂xσ(x, y) > 0 on any dense subset of R. The argument for ∂

∂yσ(x, y) is analogous.

ii)⇒ i): For any ε, ε′ ≥ 0 with ε+ ε′ > 0 it holds that

σ(x+ ε, y − ε′)− σ(x, y) =

∫ x+ε

x

∂

∂z
σ(z, y − ε′)dz −

∫ y

y−ε′

∂

∂z
σ(x, z)dz > 0

since either [x, x + ε] or [y − ε′, y] or both are non-empty and dense subsets of R. Hence,
σ satisfies ordering.

A.2: Main Results

Now we prove the results stated in the main text.

Proof of Proposition 1. Consider some discrete lottery L := (x1, p1; . . . ;xn, pn) with n ≥ 2.
Denote∆i := ∆−σ(u(xi),u(c)) and σi := σ(u(xi), u(c)) aswell as σix := ∂σi

∂u(xi)
and σiy := ∂σi

∂u(c) .
First we verify that the certainty equivalent is unique. For that, it is sufficient to show

∂Us(L)

∂u(c)
= − ln(∆)

((∑n
k=1 pk u(xk)∆kσ

k
y

) (∑n
k=1 pk ∆k

)
−
(∑n

k=1 pk∆kσ
k
y

) (∑n
k=1 pk u(xk)∆k

)(∑n
k=1 pk ∆k

)2
)
≤ 0.

Now it is straightforward to see that ∂U
s(L)

∂u(c) ≤ 0 holds if and only if

∑n
k=1 pk u(xk)∆k∑n

k=1 pk ∆k︸ ︷︷ ︸
=u(c)

(
n∑
k=1

pk∆kσ
k
y

)
≥

n∑
k=1

pk u(xk)∆kσ
k
y .
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Denote X := {k ∈ {1, . . . , n}|u(xk) ≤ u(c)} and X := {k ∈ {1, . . . , n}|u(xk) > u(c)}.
Then, we can rewrite the above inequality as∑

k∈X
pk ∆k σky︸︷︷︸

≥0

(u(c)− u(xk))︸ ︷︷ ︸
≥0

+
∑
k∈X

pk ∆k σky︸︷︷︸
≤0

(u(c)− u(xk))︸ ︷︷ ︸
<0

≥ 0.

Hence, ∂U
s(L)

∂u(c) ≤ 0 always holds and the certainty equivalent is unique.
Second, we verify that the certainty equivalent is monotonic in outcomes. Denote

H(x,p, c) := u−1

(∑n
i=1 pi u(xi)∆

−σ(u(xi),u(c))∑n
i=1 pi ∆−σ(u(xi),u(c))

)
− c,

where x := (x1, . . . , xn), p := (p1, . . . , pn). Then, we observe that

∂

∂c
H(x,p, c) = (u−1)′ (U s(L))︸ ︷︷ ︸

>0

u′(c)︸︷︷︸
>0

∂U s(L)

∂u(c)︸ ︷︷ ︸
≤0

−1 < 0
(C.2)

and
∂

∂xk
H(x,p, c) = (u−1)′ (U s(L))︸ ︷︷ ︸

>0

u′(xk)︸ ︷︷ ︸
>0

∂U s(L)

∂u(xk)

where

∂Us(L)

∂u(xk)
=

[pk∆k − pk∆k ln(∆)σkxu(xk)]
(∑n

i=1 pi ∆i

)
− [pk∆k(− ln(∆))σkx]

(∑n
i=1 pi u(xi)∆i

)(∑n
i=1 pi ∆i

)2 .

Thus, we have ∂Us(L)
∂u(xk)

> 0 if and only if

pk∆k

[
1− ln(∆)σkxu(xk)

]
> pk∆k(− ln(∆))σkx

(∑n
i=1 pi u(xi)∆i∑n

i=1 pi ∆i

)
︸ ︷︷ ︸

=u(c)

or, equivalently,

1 + ln(∆)︸ ︷︷ ︸
<0

σkx
(
u(c)− u(xk)

)︸ ︷︷ ︸
≤0

> 0.

This inequality is always fulfilled as σkx ≥ 0 holds if and only if u(c) ≤ u(xk). Hence,
we have ∂H(x,p, c)/∂xk > 0 and the implicit function theorem yields monotonicity in
outcomes, that is,

∂c

∂xk
= −

∂H(x,p,c)
∂xk

∂H(x,p,c)
∂c

> 0.

Third, we assess whether the certainty equivalent is also monotonic in probabilities.
Suppose that probability mass is c.p. shifted from outcome xl to outcome xi for some
i, l ∈ {1, . . . , n}, i 6= l. By definition, a salient thinker’s certainty equivalent is monotonic
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in probabilities if and only if
∂c

∂pi
> 0⇔ xi > xl.

Denote pl = 1−
∑

j 6=l pj so that an increase in pi induces a corresponding decrease in pl.
The implicit function theorem yields

∂c

∂pi
= −

∂H(x,p,c)
∂pi

∂H(x,p,c)
∂c

.

Using ineq. (C.2) the certainty equivalent is monotonic in probabilities if and only if

∂H(x,p, c)

∂pi
> 0⇔ xi > xl.

Suppose xi > xl. Then we observe that

∂H(x,p, c)

∂pi
= (u−1)′ (Us(L))︸ ︷︷ ︸

>0

(
[u(xi) ∆i − u(xl) ∆l]

∑n
k=1(pk ∆k)− [∆i −∆l]

∑n
k=1(pk u(xk)∆k)(∑n

k=1 pk ∆k

)2
)
> 0,

which holds if and only if

(
u(xi)− u(c)

)
∆i >

(
u(xl)− u(c)

)
∆l. (C.3)

We distinguish the following three cases:

(1) xi > xl > c: In this case u(xi)−u(c) > u(xl)−u(c) > 0 and ∆i > ∆l due to ordering.
Thus, (C.3) is satisfied.

(2) xi > c > xl: The left-hand side of (C.3) is positive, while its right-hand side is
negative, so that inequality (C.3) holds.

(3) c > xi > xl: Here, 0 > u(xi) − u(c) > u(xl) − u(c) and ∆i < ∆l due to ordering
which gives (u(xi)− u(c))∆i > (u(xi)− u(c))∆l > (u(xl)− u(c))∆l.

The case xi < xl is analogous. Altogether, we conclude

∂H(x,p, c)

∂pi
> 0 if and only if xi > xl.

This completes the proof.

Proof of Proposition 2. Let L := (x1, p;x2, 1− p) with x2 > x1. Ordering implies

lim
p→0

σ(x1,E[L]) = σ(x1, x2) > σ(x2, x2) = lim
p→0

σ(x2,E[L]).

Since the salience function is continuous, there exists some p̂ = p̂(x1, x2) ∈ (0, 1) such
that the lottery’s downside is weakly more salient than its upside for any p ≤ p̂. Then,
the statement immediately follows from the fact that—due to ordering—the salience of
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the lottery’s downside payoff x1 monotonically decreases in the probability p, while the
salience of its upside payoff monotonically increases in p.

Proof of Proposition 3. Consider a binary lottery L with expected value E and variance V .
For a given skewness S, its parameters x1, x2 and p are uniquely defined as delineated
in Lemma 1. Now suppose the lottery’s skewness increases. Then, we observe that the
lottery’s downside payoff becomes more likely. Formally, we have

∂p

∂S
= 2 · (S2 + 4)−3/2 > 0.

Using (2), this implies that both the downside payoff x1 and the upside payoff x2 increase
in the skewness S. Therefore, the difference between the downside (upside) payoff and
the expected value decreases (increases) in the lottery’s skewness S. Formally, we have

∂(E − x1)
∂S

< 0 and ∂(x2 − E)

∂S
> 0.

Since the expected value E is fixed, an increase in contrast is equivalent to an increase in
salience due to ordering. Hence, the downside payoff’s salience decreases in S, while the
upside payoff’s salience increases in S.

Since limS→∞ x2 =∞ > E, we obtain

lim
S→∞

σ(x2, E) > σ(E,E) = lim
S→∞

σ(x1, E)

by the ordering property. Now by continuity of the salience function we can conclude
that there exists some Ŝ < ∞ such that for any S > Ŝ the lottery’s upside is salient. As
we have seen that the salience of both outcomes is monotonic in the lottery’s skewness S,
we conclude that the salient thinker chooses the risky option if and only if S > Ŝ. Finally,
limS→−∞ σ(x1, E) > σ(E,E) = limS→−∞ σ(x2, E) and monotonicity ensure that there
exists a unique skewness value Ŝ ∈ R such that r(E, V, Ŝ) = 0.

Proof of Proposition 4. Consider two salience functions σ and σ̂. Suppose that the contrast
effect is stronger for salience function σ than for salience function σ̂. For the binary lottery
Lwith expected valueE, variance V , and skewness S, denote r(E, V, S) the risk premium
if the salience of outcomes is assessed via σ and r̂(E, V, S) the risk premium if the salience
of outcomes is assessed via σ̂. Then, it holds r(E, V, S) > r̂(E, V, S) if and only if√

V p(1− p)(∆1 −∆2)

p∆1 + (1− p)∆2
>

√
V p(1− p)(∆̂1 − ∆̂2)

p∆̂1 + (1− p)∆̂2

(C.5)

where ∆k := ∆−σ(xk,E) and ∆̂k := ∆−σ̂(xk,E) for k ∈ {1, 2}. Rewriting (C.5) gives

∆1/∆2 − 1

p∆1/∆2 + (1− p)
>

∆̂1/∆̂2 − 1

p∆̂1/∆̂2 + (1− p)
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or, equivalently,

∆1

∆2
>

∆̂2

∆̂2

.

Then, applying the definition of salience weights yields

∆−σ(x1,E)+σ(x2,E) > ∆−σ̂(x1,E)+σ̂(x2,E),

which holds if and only if

σ(x2, E)− σ(x1, E) < σ̂(x2, E)− σ̂(x1, E).

Rearranging this inequality gives

σ(x2, E)− σ̂(x2, E) < σ(x1, E)− σ̂(x1, E).

This holds if and only if√
V p

1− p
= x2 − E < E − x1 =

√
V (1− p)

p
(C.6)

since the contrast effect is stronger for σ than for σ̂. Finally, we conclude that (C.6) holds
if and only if p < 1/2 or, equivalently, S < 0. By Definition 3, this is the case if and only if
the lottery L(E, V, S) is left-skewed.

Proof of Proposition 5. For x2 > x1 ≥ 0, let lottery L := (x1, p;x2, 1 − p) satisfy Condition
(C.1) given salience function σ̂. Then, it is immediate that the upside of lottery L is salient
under salience function σ̂. As a consequence, it has to hold that

u(x2)− u(E[L]) > u(E[L])− u(x1). (C.7)

To see this, assume the opposite. Then, since u(x2) > u(x1) ≥ 0, we have

σ̂(u(x1), u(E[L])) > σ̂(u(E[L]), u(E[L]) + u(E[L])− u(x1))

≥ σ̂(u(E[L]), u(E[L]) + u(x2)− u(E[L]))

= σ̂(u(x2), u(E[L])),

where the first inequality follows from diminishing sensitivity, the second one from or-
dering, and the final equality from symmetry. This yields a contradiction to the fact that
the upside of lottery L is salient.

From Condition (C.7), we conclude

σ(u(x2), u(E[L]))− σ̂(u(x2), u(E[L])) > σ(u(x1), u(E[L]))− σ̂(u(x1), u(E[L]))
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by Definition 4 as the contrast effect is stronger for salience function σ than for salience
function σ̂. Rearranging the above inequality yields

σ(u(x2), u(E[L]))− σ(u(x1), u(E[L])) > σ̂(u(x2), u(E[L]))− σ̂(u(x1), u(E[L])).

As ∆ < 1 and σ̂(u(x2), u(E[L])) > σ̂(u(x1), u(E[L])) we conclude

∆σ(u(x2),u(E[L]))−σ(u(x1),u(E[L])) < ∆σ̂(u(x2),u(E[L]))−σ̂(u(x1),u(E[L])).

Thus, if lottery L satisfies Condition (C.1) for salience function σ̂, then lottery L also sat-
isfies Condition (C.1) for salience function σ. This completes the proof.

Proof of Proposition 6. For a given expected value E ∈ R, consider a lottery L ∈ L(E)

which is sold at some price z ∈ R. Hence the choice set comprises {L, z}. As u is (weakly)
concave there exist some a, b ≥ 0 such that u(x) ≤ ax + b. Denote ∆k := ∆−σ(u(xk),u(z))

for k ∈ {1, 2}. Using p = (x2 − E)/(x2 − x1) we get

U s(L) =
∆1(x2 − E)u(x1) + ∆2(E − x1)u(x2)

∆1(x2 − E) + ∆2(E − x1)

≤∆1(x2 − E)(ax1 + b) + ∆2(E − x1)(ax2 + b)

∆1(x2 − E) + ∆2(E − x1)

=b+ a · ∆1(x2 − E)x1 + ∆2(E − x1)x2
∆1(x2 − E) + ∆2(E − x1)

≤b+ a∆̄ · (x2 − E)x1 + (E − x1)x2
x2 − x1

=b+ a∆̄E.

Here, the first inequality follows from the concavity of the value function, while the sec-
ond inequality follows from using the upper bound of ∆̄ for the salience weights in the
numerator and the lower bound of 1 for the salience weights in the denominator.

A.3: Comparative Statics of the Salience Model

Here, we derive the comparative statics underlying Prediction 2. More specifically, we
delineate how the threshold value Ŝ (defined in Proposition 3) depends on the lottery’s
expected value E if we assume a linear value function. In order to derive these compara-
tive statics, we have to impose more structure on the salience function.

Definition 6 (Marginal ordering). A salience function satisfies the marginal ordering prop-
erty if and only if ∂

∂xσ(x, y) > 0 > ∂
∂yσ(x, y) for any x > y.

Note that all salience functions that have been proposed in the literature satisfy the
marginal ordering property—in particular, our standard salience function σβ,θ. In this
sense, the assumption of marginal ordering is not very restrictive. Using this property,
we are able to prove the following lemma.
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Lemma 3. Suppose the salience function satisfies the marginal ordering property. Then, the
threshold value Ŝ defined in Proposition 3 satisfies

∂

∂E
Ŝ(E, V ) < 0 if and only if ∂

∂E

(
σ(x2(E, V, S), E)− σ(x1(E, V, S), E)

)∣∣∣∣
S=Ŝ

> 0.

Proof. Consider the lottery L(E, V, S), which has outcomes xk = xk(E, V, S), k ∈ {1, 2},
and a downside probability p = p(S) as defined in (2). We divide the proof into two
parts. First, we investigate how the salient thinker’s risk premium r(E, V, S) depends on
the lottery’s expected value E. Second, we use this result to prove our lemma.

PART (1). We need to determine the sign of

∂

∂E
r(E, V, S) =

√
V p(1− p) · ∂

∂E

(
∆−σ(x1,E) −∆−σ(x2,E)

p∆−σ(x1,E) + (1− p)∆−σ(x2,E)

)
, (4)

which equals the sign of

∂

∂E

(
∆1 −∆2

p∆1 + (1− p)∆2

)
=

(
∂∆1
∂E
− ∂∆2

∂E

)
(p∆1 + (1− p)∆2)− (∆1 −∆2)

(
p ∂∆1
∂E

+ (1− p) ∂∆2
∂E

)
(p∆1 + (1− p)∆2)2 (5)

with ∆k := ∆−σ(xk,E) for k ∈ {1, 2}. Plugging

∂∆k

∂E
= − ln(∆)∆k

∂

∂E
σ(xk, E)

into (5) yields

∂

∂E

(
∆1 −∆2

p∆1 + (1− p)∆2

)
=

− ln(∆)∆1∆2

(p∆1 + (1− p)∆2)
2︸ ︷︷ ︸

>0

·
(
∂

∂E
σ(x1, E)− ∂

∂E
σ(x2, E)

)
.

Hence, we conclude

∂

∂E
r(E, V, S) < 0 if and only if ∂

∂E
(σ(x2, E)− σ(x1, E)) > 0.

PART (2). By definition, the threshold value Ŝ = Ŝ(E, V ) solves r = r(E, V, S) = 0.
Applying the implicit function theorem yields

∂

∂E
Ŝ(E, V ) = −

∂
∂E r(E, V, S)
∂
∂S r(E, V, S)

∣∣∣∣
S=Ŝ

.

Thus, we have to determine the sign of

∂r

∂S

∣∣∣∣
S=Ŝ

=
√
V

(
∆̂1 − ∆̂2

p∆̂1 + (1− p)∆̂2

)
︸ ︷︷ ︸

=0 by definition of Ŝ

· ∂
∂S

(√
p(1− p)

)∣∣∣∣
S=Ŝ

+
√
V p(1− p) · ∂

∂S

(
∆1 −∆2

p∆1 + (1− p)∆2

)∣∣∣∣
S=Ŝ︸ ︷︷ ︸

=:Ψ(E,V,Ŝ)
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where ∆̂k := ∆−σ(xk(E,V,Ŝ),E) for k ∈ {1, 2}. Hence, we only need to derive the sign of

Ψ(E, V, Ŝ) =

(
p∆̂1 + (1− p)∆̂2

)(
∂∆1
∂S
− ∂∆1

∂S

)∣∣∣∣
S=Ŝ

+

=0 by def. of Ŝ︷ ︸︸ ︷(
∆̂1 − ∆̂2

)(
p ∂∆1
∂S

+ (1− p) ∂∆2
∂S

+ ∂p
∂S

(∆1 −∆2)

)∣∣∣∣
S=Ŝ(

p∆̂1 + (1− p)∆̂2

)2

which is equivalent to the sign of(
∂∆1

∂S
− ∂∆2

∂S

)∣∣∣∣
S=Ŝ

= − ln(∆)∆̂1

(
∂

∂S
σ(x1, E)− ∂

∂S
σ(x2, E)

)∣∣∣∣
S=Ŝ

.

We conclude

∂

∂S
σ(x1, E)

∣∣∣∣
S=Ŝ

= −
√
V

2

√(
1−p
p

) ∂
(
1−p
p

)
∂S

∂

∂x1
σ(x1, E)

∣∣∣∣
S=Ŝ

and
∂

∂S
σ(x2, E)

∣∣∣∣
S=Ŝ

=

√
V

2

√(
p

1−p

) ∂
(

p
1−p

)
∂S

∂

∂x2
σ(x2, E)

∣∣∣∣
S=Ŝ

.

Altogether, we have

(
∂∆1

∂S
− ∂∆2

∂S

)∣∣∣∣
S=Ŝ

= − ln(∆)∆̂1

√
V
∂
(

p
1−p

)
∂S

(√
p

1− p

<0︷ ︸︸ ︷
∂

∂x1
σ(x1, E)−

√
1− p
p

>0︷ ︸︸ ︷
∂

∂x2
σ(x2, E)

)∣∣∣∣
S=Ŝ

< 0

since σ satisfies the marginal ordering property and
∂
(

p
1−p

)
∂S = −

∂
(

1−p
p

)
∂S > 0. Hence we

conclude that ∂
∂S r(E, V, S)

∣∣
S=Ŝ

< 0.
Using PART (1), we obtain ∂

∂E Ŝ(E, V ) < 0 if and only if

∂

∂E

(
σ(x2(E, V, S), E)− σ(x1(E, V, S), E)

)∣∣∣∣
S=Ŝ

> 0 (C.8)

by the implicit function theorem.

Proposition 7. Suppose the salience function satisfies the marginal ordering property and de-
creasing diminishing sensitivity. Then, the threshold value Ŝ defined in Propostion 3 satisfies

∂

∂E
Ŝ(E, V )

> 0, if x̂1 < 0 < x̂2,

< 0, otherwise,

where x̂k := xk(E, V, Ŝ), k ∈ {1, 2}, is given in Equation (2).

Proof. First, we consider the case x̂1 < 0 < x̂2. Then, diminishing sensitivity implies that

∂

∂E
σ(x2(E, V, S), E)

∣∣∣∣
S=Ŝ

< 0 <
∂

∂E
σ(x1(E, V, S), E)

∣∣∣∣
S=Ŝ

,
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and the statement follows immediately from the proof of Lemma 3.
Second, we consider the cases where either x̂1 ≥ 0 or x̂2 ≤ 0. By definition of Ŝ, we

have σ(x̂1, E) = σ(x̂2, E). Thus, decreasing diminishing sensitivity implies

∂

∂E

(
σ(x2(E, V, S), E)− σ(x1(E, V, S), E)

)∣∣∣∣
S=Ŝ

> 0,

and the statement follows from Lemma 3.

We have investigated how the threshold value Ŝ defined in Proposition 3 depends on
the expected value of the risk at hand. An immediate consequence of Proposition 7 is
Prediction 2, which is stated in the main text.

Finally, it is straigthforward to see that a wide class of salience functions satisfies de-
creasing diminishing sensitvity, and therefore yields Proposition 7. For any n ∈ N, for
instance, the salience function σ(x, y) = (σβ,θ(x, y))n satisfies decreasing diminishing sen-
sitivity. Fix x, y, z > 0 such that x ≥ z and σ(x− z, x) ≥ σ(x+ y, x). Then, we have

∂

∂x

[
(σβ,θ(x−z, x))n−(σβ,θ(x+y, x))n

]
= 4n·

[
−

(σβ,θ(x− z, x))n

2x− z + θ
+

(σβ,θ(x+ y, x))n

2x+ y + θ

]
< 0,

as well as

∂

∂x

[
(σβ,θ(−x+ z,−x))n−(σβ,θ(−x− y,−x))n

]
= 4n ·

[
−

(σβ,θ(−x+ z,−x))n

2x− z + θ
+

(σβ,θ(−x− y,−x))n

2x+ y + θ

]
< 0.

Note that, by the reflection property, it follows σ(−x + z,−x) ≥ σ(−x − y,−x) from
σ(x − z, x) ≥ σ(x + y, x). Thus, the salience function σ(x, y) satisfies decreasing di-
minishing sensitivity. Similiar calculations as above show that also the salience function
σ(x, y) = |x−y|

|x|+|y|+θ , which has been proposed by Bordalo et al. (2012), satisfies decreasing
diminishing sensitivity and yields the same prediction. To the best of our knowledge,
Proposition 7 applies to any salience function proposed in the literature.

Appendix B: Skewness Preferences According to a Model of Fo-
cusing (Kőszegi and Szeidl, 2013)

In this section, we verify that our explanation for skewness preferences does not hinge
on the specific assumptions of salience theory of choice under risk, but also holds under
a related approach to stimulus driven attention—a model of focusing (Kőszegi and Szeidl,
2013). As Kőszegi and Szeidl analyze deterministic choice problems only, we extend their
model toward risky choices along the lines of salience theory, that is, the agent evaluates
an option according to the underlying state space. As discussed in Section 2, this assump-
tion can be relaxed for both the salience and the focusing model.
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Model. Suppose some choice set C := {Lx, Ly} where Lx := (x1, p1; . . . , xn; pn) and
Ly := (y1, q1; . . . ; ym, qm) are discrete lotteries with n,m ∈ N and

∑n
i=1 pi =

∑m
i=1 qi = 1.

We impose the same conventions for the lotteries’ outcomes as in themain text (i.e., the lot-
teries’ ouctomes are pairwisely distinct and occur with strictly positive probability). The
state spaceS comprises all feasible payoff-combinations of the available lotteries. Thereby,
each state of the world sij := (xi, yj) occurs with some objective probability πij . Again
we assume that the decision-maker evaluates monetary outcomes via a strictly increasing
value function u(·) with u(0) = 0.

According to the focusing model, a decision-maker assigns a weight to each state sij
that depends on the state’s objective probability πij and on the absolute difference in the
values of the feasible outcomes in this state, denoted as dij := |u(xi) − u(yj)|. The larger
the range of values assigned to the outcomes in a state is, the higher the agent’s focus on
this particular state. Formally, the agent’s focus on state sij ∈ S is given by g(dij) where
the focusing function g : R+ → R+ is bounded and strictly increasing.19

For reasons of comparability, we adopt the smooth salience characterization intro-
duced in Section 2 for the focusing model. That is, each state sij receives focus weight
∆−g(dij) for some focusing function g(·) and some constant ∆ ∈ (0, 1] that captures the
agent’s susceptibility to focusing. We call an agent with ∆ < 1 a focused thinker.

Definition 7. A focused thinker’s decision utility Uf (·) for Lx ∈ {Lx, Ly} is given by

Uf (Lx) =
∑
sij∈S

πiju(xi) ·
∆−g(dij)∑

sij∈S πij∆
−g(dij)

.

The normalization factor in the denominator ensures that the distorted probabilities sum
up to one and that the valuation for a safe option c ∈ R is undistorted; that is, irrespective
of the composition of the choice set we have Uf (c) = U(c) = u(c).

Certainty equivalents andmonotonicity. Suppose the agent faces some choice set {L, c}
where L := (x1, p1; . . . ;xn, pn) is a lottery with n ≥ 2 pairwisely distinct ouctomes and
c denotes the option that pays an amount of c ∈ R with certainty. A focused thinker
(weakly) prefers the lottery L over the safe option c if and only if

Uf (c) ≤ Uf (L) =

∑n
i=1 piu(xi)∆

−g(|u(xi)−u(c)|)∑n
i=1 pi∆

−g(|u(xi)−u(c)|)
=: F (c).

Without loss of generality we assume x1 < . . . < xn. Then a focused thinker’s certainty
equivalent is implicitly given by c = u−1(F (c)). As for the salience model, we conclude
that u−1 ◦ F : [x1, xn]→ [x1, xn] has at least one fixed point due to Brouwer’s fixed-point
theorem and we obtain the following proposition.

19Relatedly, Bushong et al. (2016) propose amodel of relative thinking that differs from the preceding focusing
model only in the assumption on the slope of g: while we have g′(dij) > 0 for the focusing model, we have
g′(dij) < 0 for the model of relative thinking. In words, a relative thinker’s probability weight on state sij
decreases in the corresponding absolute difference in values dij .
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Proposition 8 (Certainty equivalent to a discrete lottery). A focused thinker’s certainty equiv-
alent to a lottery with n ≥ 2 outcomes is unique and monotonic in outcomes and probabilities.

Proof. Note that for any salience function σ(·, ·) and any focusing function g(·) we have

sgn
(
∂σ(u(xi),u(c))

∂u(xi)

)
= sgn

(
∂g(|u(xi)−u(c)|)

∂u(xi)

)
and sgn

(
∂σ(u(xi),u(c))

∂u(c)

)
= sgn

(
∂g(|u(xi)−u(c)|)

∂u(c)

)
.

Then, the statement simply follows from replacing the salience function in the proof of
Proposition 1 by a focusing function.

Skewness preferences under a linear value function. To investigate a focused thinker’s
attitude toward skewness, suppose some choice set {L,E[L]}where L := (x1, p;x2, 1− p)
is a binary lotterywith outcomes x2 > x1 and the expected valueE[L] := p·x1+(1−p)·x2.
As in Section 4, we assume a linear value function u(x) = x.

Using the characterization of binary risks in Lemma 1, a focused thinker’s risk pre-
mium for the binary lottery Lwith expected value E, variance V , and skewness S equals

r(E, V, S) =
√
V p(1− p) ·

(
∆−g(E−x1) −∆−g(x2−E)

p∆−g(E−x1) + (1− p)∆−g(x2−E)

)
(6)

where outcomes xk = xk(E, V, S), k ∈ {1, 2}, and probability p = p(S) are defined in (2).
A focused thinker strictly prefers the lottery L(E, V, S) over the safe option E if and only
if the lottery’s risk premium is strictly negative, or, equivalently, the agent’s focus lies on
the lottery’s upside payoff. We conclude:

Proposition 9 (Skewness preferences). For any given expected value E and variance V , a fo-
cused thinker strictly prefers the lottery L(E, V, S) over its expected value E if and only if S > 0.

Proof. It is straightforward to show that a focused thinker’s risk premium is strictly neg-
ative if and only if g(x2 − E) > g(E − x1); that is, her focus lies on the lottery’s upside
payoff. As g is a strictly increasing function, this is the case if and only if

√
V

√
p

1− p
= x2 − E > E − x1 =

√
V

√
1− p
p

,

or equivalently, p > 1/2. Then, from equation (1), we conclude that a focused thinker
strictly prefers the lottery over its expected value if and only if S > 0.

Hence, a focused thinker seeks right-skewed but avoids left-skewed risks.20Similar to
the salience model, we observe that a focused thinker’s preference for right-skewed and
aversion toward left-skewed risks is enhanced if the contrast effect becomes stronger.

20Note that, for any expected value E and variance V , a relative thinker (Bushong et al., 2016, see also
footnote 12) prefers the binary lottery L(E, V, S) over its expected value E if and only if S < 0. It is straight-
forward to show that, for a relative thinker, we have g(x2 − E) > g(E − x1) if and only if p < 1/2 as g is
strictly decreasing by assumption. Hence a relative thinker seeks left-skewed but avoids right-skewed risks.
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Definition 8. We say that the contrast effect is stronger for focusing function g than for focusing
function ĝ if the difference g(x)− ĝ(x) is increasing in x ∈ R+.

Note that the argument of the focusing function represents the difference in values
assigned to the outcomes that are feasible in a given state. Thus, the preceding definition
of the strength of the contrast effect is analogous to the definition given for the salience
model. We conclude:

Proposition 10 (Contrast and skewness preferences). Let the contrast effect be stronger for
focusing function g than for focusing function ĝ. Then, a focused thinker’s risk premium r(E, V, S)

is larger for g than for ĝ if and only if S < 0, that is, the lottery is left-skewed.

Proof. Analogous to the proof of Proposition 4.

Puzzles on skewness preferences. Similar to salience theory of choice under risk, the fo-
cusing approach yields more reasonable predictions on the magnitude of skewness pref-
erences than cumulative prospect theory. Wewill show that the puzzles on skewness pref-
erences in the small (Ebert and Strack, 2015, 2016) and in the large (Rieger andWang, 2006;
Azevedo and Gottlieb, 2012) arising for CPT agents can be resolved for focused thinkers.

First, we argue that focusingdoes not necessarily yield the sameunrealistic predictions
on skewness preferences in the small as cumulative prospect theory (Ebert and Strack,
2015). Formally, suppose that a focused thinker faces some choice set {L,E[L]}. In line
with Section 5, let x2 > x1 ≥ 0 and assume that the decision-maker’s value from money
is strictly increasing and strictly concave, that is, u′(·) > 0 and u′′(·) < 0. As before, we
normalize u(0) = 0. Then, a focused thinker strictly prefers the risky lottery L over the
safe option E[L] if and only if

u(x2)− u(E[L])

u(E[L])− u(x1)
· 1− p

p
>

∆1

∆2
,

where ∆k := ∆−g(|u(xk)−u(E[L])|), k ∈ {1, 2}. For any given expected value E = E[L],
substituting p = (x2 − E)/(x2 − x1) yields

u(x2)−u(E)
x2−E

u(E)−u(x1)
E−x1

>
∆1

∆2
. (C.1–Focus)

Using the following two examples, we show that depending on the value function’s
curvature there might not exist a binary lottery satisfying Condition (C.1–Focus). As in
Section 5, we assume power utility u(x) = xα for some α ∈ (0, 1). Furthermore, we
consider the focusing function g(x) = 1− 1

1+γx for some γ > 0 and x ∈ R+. Let ∆ = 0.7.

Example 7 (Value function). Assume γ = 1 so that the focusing function is given by
g(x) = 1 − 1

1+x . If the value function’s curvature increases, that is, the parameter α de-
creases, we observe that inequality (C.1–Focus) is less likely to hold. More specifically,
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numerical computations show that there exists some threshold value α̃ ∈ (0, 1) such that
for any α ∈ (0, α̃) no unfair, attractive gamble exists. For α = 0.95 and α = 0.5, Figure
3 illustrates the risk premium r as a function of probability p and upside payoff x2 for a
given downside payoff x1 = 1.

Risk premium for α = 0.95. Risk premium for α = 0.5.

Figure 3: The above graphs show the risk premium as a function of the upside payoff x2 and the
probability p that the downside payoff x1 is realized. For α = 0.95, the risk premium becomes
negative for highly right-skewed lotteries (i.e., a large probability p on the downside payoff x1) with
a large upside payoff x2. For α = 0.5, the risk premium is non-negative for any feasible lottery.

Example 8 (Focusing function). Fix α = 1/2 so that the value function is u(x) =
√
x. We

observe that inequality (C.1–Focus) is more likely to hold for at least some binary lottery
L if parameter γ increases, that is, the contrast effect becomes stronger. In fact, numerical
computations show that there exists some γ̂ > 1 such that for any γ > γ̂ at least one unfair,
attractive gamble exists. For γ = 1 and γ = 10, Figure 4 illustrates the risk premium r as
a function of probability p and upside payoff x2 for a given downside payoff x1 = 1.

Risk premium for γ = 1. Risk premium for γ = 10.

Figure 4: The above graphs show the risk premium as a function of the upside payoff x2 and
the probability p that the downside payoff x1 is realized. For γ = 10, the risk premium becomes
negative for highly right-skewed lotteries (i.e., a large probability p on the downside payoff x1) with
a large upside payoff x2. For γ = 1, the risk premium is non-negative for any feasible lottery.
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Second, we show that a focused thinker’s valuation for binary lotteries with a given
expected value E < ∞ is bounded. Hence, cumulative prospect theory’s predictions on
skewness preferences in the large—as delineated by Rieger andWang (2006) andAzevedo
and Gottlieb (2012)—can be resolved in the focusing model.

Proposition 11. Let L(E) denote the set of binary lotteries L with finite expected value E ∈ R.
A focused thinker’s valuation for some L ∈ L(E) is bounded by a function which is affine in E.

Proof. Since the focusing function is bounded there exists some threshold value ∆̃ < ∞
such that ∆−g(x) < ∆̃ for any x ∈ R+. The remainder of the proof is analogous to the
proof of Proposition 6.

Appendix C: Mao’s Lotteries and Skewness Preferences

Suppose choice set C := {Lx, Ly}where Lx := (x1, p;x2, 1− p) and Ly := (y1, q; y2, 1− q)
with outcomes x2 > x1 and y2 > y1 and probabilities p, q ∈ (0, 1). As in Section 4, we
assume a linear value function u(x) = x. Mao (1970) introduced the following class of
binary lotteries that allow us to identify skewness preferences.

Definition 9. Let p ∈
(
0, 12
)
. Two perfectly correlated, binary lotteries Lx := (x1, p;x2, 1 − p)

and Ly := (y1, 1− p; y2, p) denote aMao pair if both have the same expected value and variance.

Mao lotteries differ only in their skewness: Lx is left-skewed as its high payoff x2

occurs with a high probability while lottery Ly is right-skewed as its high payoff y2 occurs
with a small probability (for a formal proof see Ebert and Wiesen, 2011). In line with
Definition 3, Ebert andWiesen (2011) state that “an individual is said to be skewness seeking
if, for any given Mao pair, she prefers Ly over Lx.”

Proposition 12. For any given Mao pair, a salient thinker prefers Ly over Lx.

Proof. Due to the perfect correlation of the lotteries, the state space S comprises only two
states, that is, S = {(x1, y2), (x2, y1)}. Hence a salient thinker prefers the right-skewed
lottery Ly over the left-skewed lottery Lx if and only if

U s(Ly)− U s(Lx) = p(y2 − x1)∆−σ(x1,y2) + (1− p)(y1 − x2)∆−σ(x2,y1) > 0.

Since p(y2 − x1) = −(1 − p)(y1 − x2) > 0 by definition—remember that both lotteries
have the same expected values—the above inequality simplifies to σ(x1, y2) > σ(x2, y1).
As p < 1/2 by Definition 9, Lemma 1 yields

x1 < y1 < x2 < y2.

Thus, ordering implies σ(x1, y2) > σ(x2, y1), which was to be proven.

Finally, it is straightforward to see from the proof above that also a focused thinker
prefers Ly over Lx for any given Mao pair. In contrast, a relative thinker in the spirit of
Bushong et al. (2016) would choose Lx over Ly for any given Mao pair.
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