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Abstract

We compare sequential and bundle procurement auctions in a framework of suc-

cessive procurement situations, where current success positively or negatively affects

future market opportunities. We find that in bundle auctions procurement cost is

lower and less risky than in sequential standard auctions, but still higher than in

the optimal sequential auction. Only a sequential second price auction leads to the

efficient outcome.
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1 Introduction

Every year governments and private sector firms place numerous orders by running pro-

curement auctions. For instance, governments of Western nations procure about 10 % of

national product annually.1 For the private sector, Burt, Norquist, and Anklesaria (1990)

report that in the United States the fraction of purchased inputs increased from 20 % to

56 % of the selling price of finished goods during the last 50 years. A substantial fraction

of this procurement takes place by competitive bidding.

Usually, over time firms participate in more than one procurement auction. In this

case, a firm’s cost of providing one object is quite likely not independent of the allocation

of other production rights. Rather, one often observes that the production right for one

object guarantees the firm a comparative cost advantage in a follow–up procurement sit-

uation. This may be due to scale effects or due to technology improvements from earlier

production processes. There may also be situations where current success decreases future

opportunities, for example if a firm already produces close to its capacity bound. Rational

firms will account for the expected comparative cost (dis)advantage in future auctions in

their price offers today.

In particular if several consecutive projects are complementary (as for example, building

a facility and the service contract for this facility), a government may consider to procure

the contracts as a bundle instead of running a sequence of separate auctions. The reason

is that if the contracts are complements bids are presumably more aggressive since firms

bidding for the bundle base their offers on much lower expected total production cost.2

Note, however, that procurement of the bundle has to take place before production of

the first object is due. Thus, after the bundle auction firms may observe additional cost

relevant information for parts of the contracted issues. Moreover, small firms (that are

typically excluded in the bundle auction3) may still be in the position to compete for parts

of the bundle. All this suggests that aftermarket trade should play an important role after

a bundle auction. As a matter of fact, subcontracting is a common phenomenon in many

procurement situations where contracts oblige the successful firm to provide a variety of

1Cf. McAfee and McMillan (1987).
2Also, the literature on optimal auctions suggests that bundling may increase the auctioneer’s revenue,

even in absence of synergies. Cf. Palfrey (1983), Armstrong (2000), and Avery and Hendershott (2000).
3Usually firms have to prove their ability to carry out the project in advance and are only eligible to

bid in an auction for a contract if they qualified.
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goods and services.4 In contrast, in separate auctions each object can be procured relatively

close to its actual delivery date, when the details of the corresponding contract can be well

defined. Moreover, all firms that are qualified to deliver a single object can participate in

the respective auction.

The model analyzed in this paper is a stylized version of the procurement setting de-

scribed above. We have two objects that may be complements or substitutes.5 Costs for

the first object are observed at an earlier point in time (at stage one) than costs for the

second object (at stage two). Several multiproduct firms are eligible to bid for both objects,

while additional singleproduct firms can only compete for the second one. Delivery of the

first (second) object is due at the end of period one (two). Prior to production, each object

can be reallocated among the firms (this implies that the allocation of the first object is

irreversible at stage two).

In this framework we compare a sequential and a bundle auction. We find that the

sequential auction allocates efficiently6, whereas the bundle auction achieves lower procure-

ment cost. The reason is that the winner of the bundle auction anticipates relatively high

profits from subcontracting at stage two which are competed away in the auction at stage

one. A comparison with the optimal sequential auction reveals that the bundle auction ac-

tually implements almost the optimal allocation rule (that minimizes overall procurement

cost). In both mechanisms the stage two–allocation rule favors the stage one–winner and

discriminates against the losers in order to increase competition at stage one. Moreover we

show that the price is less risky in the bundle auction, since here the seller passes the price

risk associated with the final allocation of the second object to the bidders. For complemen-

tary goods (where bundle auctions are a much more natural choice than for substitutes),

our results apply to both, first and second price auctions.

Let us finally discuss the literature related to the topics we analyze. Von der Fehr and

Riis (1998), Jeitschko and Wolfstetter (2002), and Jofre-Bonet and Pesendorfer (2005) ana-

lyze sequential auctions with the same timing of information revelation. Von der Fehr and

Riis study how future market opportunities affect the bidding behavior (and thereby the

equilibrium price sequence) in sequential second–price auctions auctions, while Jeitschko

4Kamien (1989), as well as Gale, Hausch, and Stegeman (2000) give a variety of examples for horizontal

subcontracting.
5Although most of our results apply also to substitutes, complementary goods are the more natural

scenario to consider bundle auctions.
6The efficiency result holds only if the sequential auction is second price.
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and Wolfstetter, as well as Jofre-Bonet and Pesendorfer compare sequential first– and

second–price auctions in the presence of stochastic economies or diseconomies of scale.

They find that second price auctions yield lower (higher) procurement cost if the objects

are complements (substitutes). Their results imply that the revenue ranking between bun-

dle and sequential auctions extends to first price auctions in case of complementary goods,

but not necessarily if goods are substitutes.

A seminal contribution to the question of bundling versus separate sales is Palfrey

(1983). He finds that, even without synergies, a monopolist often prefers bundling as

compared to selling the objects in independent auctions. There are also a number of recent

theoretical analyses of multi unit auctions. Armstrong (2000) and Avery and Hendershott

(2000) derive properties of the optimal multi unit auction when types are multidimensional.7

Both find that the optimal auction favors bundling in a probabilistic sense: a high bid on

one product increases the probability of winning another product. However, additional

competition for a product reduces the profitability of all bundles including this product

for the auctioneer. Levin (1997) and Branco (1997) characterize the optimal multi unit

auction in case of synergies. Both authors make the problem tractable by reducing it to a

onedimensional mechanism design problem (i. e. each bidder observes only one private signal

that determines his valuation for each single object, and for the bundle). Levin considers a

model with only multiproduct bidders who may also submit bids on single objects, whereas

Branco also considers singleproduct bidders, however, multiproduct bidders are not allowed

to bid for single units.

Frequently used auction rules are analyzed and compared by a variety of papers. Mostly

they assume one–dimensional types and model synergies by addition of a positive constant.8

Menezes and Monteiro (2003) find that in a model with only multiproduct bidders with

superadditive valuations a sequential auction and a bundle auction are revenue equivalent.

Only few papers consider the possibility of trade after the auction. Gale, Hausch, and

Stegeman (2000) analyze sequential procurement auctions where resale is profitable due to

convex cost.9 Haile (1999) and Gupta and Lebrun (1998) analyze resale which is due to

7Armstrong has only multiproduct bidders, whereas Avery and Hendershott consider one multiproduct

bidder competing with several singleproduct bidders. Unlike in our model, the authors assume that all

valuations are drawn at the same time.
8This model goes back to Krishna and Rosenthal (1996) and was employed, e. g. by Branco (1997a) and

Albano, Germano, and Lovo (1999).
9This is also the reason for subcontracting in Kamien, Li, and Samet (1989).
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an inefficient outcome of the initial auction. In Haile this results from noisy signals at the

time of the initial auction, in Gupta and Lebrun the initially inefficient allocation is due to

asymmetries between bidders.

The paper is organized as follows: In section 2 we state the model. In section 3 we

give a description of the bundle and the sequential auction and derive equilibrium bidding

strategies and prices. In section 4 we characterize the optimal sequential auction. A

comparison of all three mechanisms is given in section 5. Section 6 concludes.

2 The Model

We consider procurement of two contracts that need to be acquired in two successive peri-

ods. Bidders privately observe their cost at the beginning of each period, i. e. the second

period’s draw is not yet known in the first period.10 The market for the second item may

be more competitive. In particular, m multiproduct firms are eligible to acquire both con-

tracts, while n − m additional singleproduct firms are only eligible to bid for the second

one (n ≥ m).

We denote by Q = (Q1, . . . , Qm) the multiproduct firms’ costs for the first contract.

Cost Qi, i = 1, . . . , m, is distributed on the interval [Q,Q] with c.d.f. Gi and density gi.

The winner of the first contract is assumed to have a stochastic comparative cost advantage

or disadvantage for the second contract. We shall call this firm ”incumbent” (I), while the

multiproduct firms that do not provide the first contract are called ”contestants” (C).

The random vector X = (X1, X2, . . . , Xm, . . . , Xn) ∈ [0, 1]n denotes production costs for

the second contract. We order the components of X such that X1 denotes the incumbent’s,

X2, . . . , Xm the contestants’, and Xm+1, . . . , Xn the singleproduct bidders’ cost for the

second contract. Cost Xi, i = 1, . . . , n, is distributed according to c.d.f. Fi with density

fi. Contestants are assumed to be symmetric with respect to their cost for the second

item, i. e. the random variables X2, . . . , Xm follow the same distribution as a reference

variable XC that is distributed according to c.d.f. FC with density fC . We assume that X1

and XC can be ranked by first order stochastic dominance. We say that the contracts are

complements (substitutes) if X1 ≤FSD XC (X1 ≥FSD XC).

Finally, we assume that the components of (Q,X) are independent. We denote by

10This kind of assumption is suitable if there is a considerable lapse of time between the two periods, or

when the exact specification of the contract is not yet communicated by the procurement agency.

5



Q(j) and X(j) the jth order statistic of the random variables in Q and X, respectively,

where we order from lowest to highest cost. Furthermore, X
{−1}
(j) and X

{−C}
(j) denote the jth

order statistic of all random variables in X except for X1 (the incumbent’s cost) and one

representative contestant’s cost, respectively.

In the following, we focus on two different mechanisms: (a) a bundle auction of both

contracts in period one, or (b) sequential procurement of one contract each period. We

assume that every single transaction is made by a second–price auction where the lowest

bidder wins and is paid the second lowest bid.

3 Equilibria

3.1 The Sequential Auction

In a sequential auction every bidder who is eligible to provide a single object can participate

in the respective competition. The auction of the first (second) contract takes place in

period one (two), after the firms have observed their private cost of providing the contract

that is auctioned off.

We analyze the game by backward induction. In the second auction, bidding the true

cost of the second contract is a (weakly) dominant strategy for every bidder. Therefore, the

expected price in the second auction is equal to the expected value of the second highest

cost, that is

E[P2] =E[X(2)]. (1)

Now consider the first auction. A multiproduct bidder who wins the first auction has

an additional profit, ΠI
2, from the second auction, whenever his cost for the second item is

lowest. Thus, in the first period an incumbent’s expected profit from the second auction is

given by11

E[ΠI
2] = E[X

{−1}
(1) −X1;X1 ≤ X

{−1}
(1) ]. (2)

However, a multiproduct bidder who did not win the first auction (a contestant) also faces a

positive profit from the second auction, ΠC
2 . A contestant’s expected profit from the second

auction is given by

E[ΠC
2 ] = E[X

{−C}
(1) −XC ;XC ≤ X

{−C}
(1) ]. (3)

11In order to simplify notation we define E[V ; A] = E[V |A]Prob[A].
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In appendix A we show that the value of incumbency, E[ΠI
2] −E[ΠC

2 ], is positive (neg-

ative) if the contracts are complements (substitutes). That is, a bidder i who wins the

first auction incurs cost qi but also ”wins” an additional expected profit from the second

auction, E[ΠI
2] −E[ΠC

2 ], which is negative in case of substitutes. Therefore, perceived cost

of winning the first contract, qi − (E[ΠI
2] − E[ΠC

2 ]), differs from the real cost of provid-

ing the first contract, qi. Iterated elimination of weakly dominated strategies yields that

bidders in the first auction bid their perceived cost of winning the first contract, that is

bi = qi− (E[ΠI
2]−E[ΠC

2 ]).12 Therefore, the expected price in the sequential auction is given

by

E [PSEQ] = E
[

Q(2)

]

− E
[

ΠI
2

]

+ E
[

ΠC
2

]

+ E [P2] (4)

= E
[

Q(2)

]

− E
[

X
{−1}
(1) −X1;X1 ≤ X

{−1}
(1)

]

+ E
[

X
{−C}
(1) −XC ;XC ≤ X

{−C}
(1)

]

+ E
[

X(2)

]

.

We can rearrange the expression to get

Proposition 1 Expected procurement cost in the sequential auction is

E [PSEQ] = E
[

Q(2)

]

+ E [X1] − E
[

X1 −X
{−1}
(2) ;X

{−1}
(2) ≤ X1

]

(5)

+ E
[

X
{−C}
(1) −XC ;XC ≤ X

{−C}
(1)

]

.

3.2 The Bundle Auction

A bundle auction necessarily takes place in period one, before the first contract has to be

allocated. At that time bidders have observed their individual cost for the first, but not

for the second item. Only firms that are eligible to compete for both contracts can bid in

a bundle auction.13

The fact that bidders observe their cost for the second contract after the bundle auction

has taken place implies potentially positive gains from trade of the second contract at stage

12Obviously, the first auction bid falls short of the cost of providing the first item if the value of incum-

bency, E[ΠI
2] − E[ΠC

2 ], is positive, which is true in the case of stochastic scale effects. From appendix A

it follows immediately that the reverse is true if X1 ≥FSD XC (stochastic diseconomies). These findings

mirror the findings of von der Fehr and Riis (1998).
13This is only relevant if there is a positive number of single unit bidders, i. e. n > m. Otherwise, all

bidders can participate.
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two (if the incumbent’s production cost for the second contract turns out to be higher than

the cost observed by one or more competitors). We allow for resale and assume that the

winner of the bundle auction chooses the resale mechanism. The characterization of the

optimal auction rules in this context goes back to Myerson (1981):

Lemma 1 (Optimal Subcontracting Mechanism Γ∗) Define virtual cost of bidder i

by

γi(xi) = xi +
Fi(xi)

fi(xi)
, i = 2, . . . , n, (6)

and assume that virtual cost γi(xi) is strict monotone increasing.14 The incumbent’s ex-

pected cost of providing the second contract is minimized if he awards the subcontract to the

firm with the lowest virtual cost γi(xi), provided it is lower than its own cost, x1.

The firm that is awarded the contract is paid the highest cost it could have had such

that its virtual cost were still lower than the minimum of the lowest virtual cost among its

competitors and the incumbent’s cost, x1.

Obviously, any bidder expects the same additional profits from the subcontracting stage as

incumbent and contestant, respectively. We denote those (random) profits by ΠI
S(Γ∗) and

ΠC
S (Γ∗).

The expected profit at stage two affects a bidder’s perceived cost of providing the bundle

of contracts: Bidder i’s expected cost of providing both contracts himself is qi +E[X1]. The

expected profit from the subcontracting stage as incumbent, E[ΠI
S(Γ∗)], lowers the expected

perceived cost of bidder i (i. e. makes winning the bundle auction more valuable). However,

also the outside option is positive, since in case of loosing the auction a multiproduct bidder

still faces positive expected profits E[ΠC
S (Γ∗)] from the subcontracting stage. This makes

him less eager to win the bundle auction. Summing up, perceived cost of providing both

items is qi +E[X1]−E[ΠI
S(Γ∗)]+E[ΠC

S (Γ∗)].15 At a bid equal to his perceived cost bidder i

is just indifferent between winning or loosing the bundle auction. This yields the following

Proposition 2 Expected procurement cost in the bundle auction is

E[PBS] = E[Q(2)] + E[X1] − E[ΠI
S(Γ∗)] + E[ΠC

S (Γ∗)]. (7)

14A sufficient condition is that reverse hazard rates fi(xi)/Fi(xi) are strict monotone decreasing.
15Note that without a subcontracting stage it holds that E[ΠI

S(Γ)] = E[ΠC
S (Γ)] = 0.
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4 The Optimal Sequential Auction

In order to assess the relative performance of the bundle and the sequential auction, in

the following we derive expected total procurement cost depending on the stage one and

stage two allocation rules denoted φ1(q) and φ2(x).16 We assume that the auctioneer has

to commit to a set of rules prior to period one and cannot modify those rules after the first

period.17 Denote by πj
i (y, z) bidder i’s expected payoff in period j if he observed cost y but

reported cost z. We get

Lemma 2 Any incentive compatible procurement mechanism where bidders participate vol-

untarily at each stage where they are eligible to bid, expected procurement cost is given

by

∫

[Q,Q]m

m
∑

i=1

(

qi +
Gi(qi)

gi(qi)

)

φ1
i (q)dG(q) (8)

+
m
∑

i=1

[

π1
i (Q,Q) −

∫ 1

0

π2
C(xC , xC)fc(xC)dxC

]

+

∫

[0,1]n

(

x1φ
2
1(x1) +

m
∑

C=1

[

xC +
n

n− 1

FC(xC)

fC(xC)

]

φ2
C(xC)

+
n
∑

s=m+1

[

xs +
1

n− 1

FC(xs)

fC(xs)
+
Fs(xs)

fs(xs)

]

φ2
s(xs)

)

f(x)dx+
n
∑

i=m+1

π2
i (1, 1),

where π1
i (Q,Q) ≥

∫ 1

0
π2

C(xC , xC)fc(xC)dxC .

Proof See appendix B. �

From the above expression, we can easily deduce the optimal sequential auction that

minimizes expected procurement cost. The first line implies that the first auction is an

ordinary first or second price auction. The second line becomes zero since a firm that

observes the highest possible cost for the first object is just left with a contestant’s expected

profit as an outside option. The integral in line three to four is minimized pointwisely by

allocation to the bidder with the lowest virtual cost as defined in the following

16A standard result of mechanism design theory is that expected payoffs are fully determined by the

allocation rule up to a constant.
17See also Jofre-Bonet and Pesendorfer (2005) who use the optimal sequential auction rule in the case

of only two multiproduct bidders to provide intuition for the comparison between first and second price

sequential auctions.
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Proposition 3 (Optimal Sequential Auction) Define virtual costs ψi(xi) of the

three types of bidders in the second auction as follows:

ψ1(x1) = x1 for the incumbent,

ψC(xC) = xC + n
n−1

FC(xC)
fC(xC)

for a contestant,

ψS(xS) = xS + 1
n−1

FC(xS)
fC(xS)

+ FS(xS)
fS(xS)

for a singleproduct bidder.

(9)

Procurement cost is minimized by conducting a regular first or second price auction in

period one and awarding the second contract to the bidder with the lowest virtual cost for

that contract, as defined by (9). This bidder is paid the highest cost he could have had such

that his virtual cost were still lowest. The other bidders pay or receive nothing at stage two.

Note that the stage two allocation rule of the optimal sequential auction differs sub-

stantially from the the allocation rule the auctioneer would like to implement after period

one.18 Independently of the relative strengths of the different bidders (i. e. independently of

whether the goods are complements or substitutes), the optimal sequential auction always

favors the incumbent at the second stage. The reason is that by favoring the incumbent

and discriminating against the contestants and the singleproduct bidders at stage two, the

auctioneer makes winning the first auction more valuable. In particular, the incumbent’s

expected stage two profit is relatively high, while a contestant’s expected profit (the ”loser’s

option value”) is rather low. Note moreover that the participation constraint at stage one

requires that discrimination against the contestants and the singleproduct bidders is such

that any multiproduct bidder is just indifferent between being treated as singleproduct bid-

der and contestant at stage two, which reflects in the corresponding virtual costs. We can

summarize that in the optimal sequential auction the stage two allocation rule is designed

to extract as much of the expected future profits as possible already at stage one.

5 Bundling versus Sequential Procurement

Now we are in the position to compare sequential and bundle sales and relate the two

auctions to the optimal sequential auction.

Note that from propositions 1 to 3 it follows that in all three mechanisms the allocation

of the first contract is efficient. That is, the mechanisms differ only with respect to the

18In a nutshell, the optimal auction at stage two (in ignorance of the first stage) would discriminate against

the strong bidders, that is, against the incumbent in case of complements and against the contestants in

case of substitutes.
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stage two–allocation rule: While in the sequential second price auction also the allocation

of the second contract is efficient, in the bundle auction and the optimal sequential auction

this is not the case. In both auctions distortion is based on two kinds of information about

the bidders: (a) their distributions and (b) whether they have won at the first stage or

not. Note that both, the bundle and the optimal auction favor the incumbent at stage two

independently of his distribution, however, to a different extent. We can prove the following

Theorem 1 (Bundle versus Sequential Auctions) Suppose all bidders bidding for

the subcontract are symmetric.19 The following claims hold true:

(i) In the bundle auction expected procurement cost is lower than in the sequential auction

but still higher than in the optimal sequential auction, i. e. E[POSA] < E[PBA] <

E[P SEQ].

(ii) The sequential auction is efficient, whereas the bundle auction is inefficient.

(iii) The price in the bundle auction second order stochastically dominates the overall price

in the sequential auction.

Proof (i) Note that expected procurement cost as given by (8) is minimized by always

awarding the second contract to the bidder with the lowest virtual cost as defined by (9).

Compared to the optimal rule, in the bundle auction we get a ”misallocation” whenever

x1 ∈
[

mini∈{2,...,n}

{

xi + FC(xi)
fC(xi)

}

,mini∈{2,...,n}

{

xi + n
n−1

FC(xi)
fC(xi)

}]

. Since in those cases the

allocation rule of the bundle auction deviates from the allocation rule that pointwisely

minimizes (8), expected procurement cost must be higher in the bundle auction than in the

optimal auction.

In order to see why procurement cost in the sequential second price auction is higher

than in the bundle auction, note that the second price auction produces a misallocation

whenever x1 ∈
[

mini∈{2,...,n} xi,mini∈{2,...,n}

{

xi + n
n−1

FC(xi)
fC(xi)

}]

. Obviously, the sequential

second price auction ”misallocates” whenever the bundle auction does, but the reverse is

not true. Thus, from (8) it immediately follows that procurement cost must be lower in

the bundle auction than in the sequential second price auction.

(ii) Is obvious given the allocation rules.

19Theorem 1 can be extended to situations, where the random variables XC , Xm+1, . . . Xn do not follow

the same distribution. In a previous version of this paper (Grimm, 2004) we show that only if the contestants

are ”weak” compared to the singleproduct bidders we need a very mild condition to establish the result.
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(iii) Suppose the stage two–allocation rule after the bundle auction was also efficient (i. e. the

incumbent subcontracts by a second price auction with a reserve price equal to his own

observed cost xi). Then, due to the revenue equivalence theorem it must hold that E[PBA] =

E[P SEQ].20 We denote the efficient subcontracting mechanism by Γe and define ∆∗ =

E[ΠI
S(Γ∗) − ΠC

S (Γ∗)] −E[ΠI
S(Γe) − ΠC

S (Γe)]. Then, we have

PBS = Q(2) + E[X1] −E[ΠI
S(Γe) − ΠC

S (Γe)] − ∆∗ (10)

= Q(2) −E[ΠI
2 − ΠC

2 ] + E[P2] − ∆∗,

PSEQ = Q(2) −E[ΠI
2 − ΠC

2 ] + P2 (11)

= PBS + ∆∗ + [P2 −E[P2]] .

Note that Q(2) and P2 are independent random variables. Therefore, PSEQ is a mean

preserving spread of PBS+∆∗, which implies that PBS second order stochastically dominates

PSEQ,21 which completes the proof. �

It turns out that from a revenue point of view the government benefits from delegating

the allocation of the second contract to the incumbent by running a bundle auction. The

reason is that compared to the efficient allocation rule the incumbent expects a higher and a

contestant a lower profit from allocation of the second contract. This makes stage one bids

more competitive in the bundle auction. Note that the result is independent of whether

the goods are complements or substitutes.

We have also shown that, although to a lesser extent, the bundle auction exhibits the

same features as the optimal sequential auction. The two allocation rules differ only in

one detail: Virtual cost of the contestants and the singleproduct bidders is slightly higher

in the optimal auction, i. e. ψi(xi) = γi(xi) + 1
n−1

FC(xi)
fC(xi)

for all i = 2, . . . , n. It is easy to

see that for both cases — substitutes and complements — the allocation rule that prevails

in the bundle auction is ”closer” to the optimal auction than the efficient allocation rule

of the sequential second price auction. In other words, the advantage that the incumbent

receives by the power to subcontract the second contract at stage two moves the incentives

in the right direction and lowers the procurement cost. Note that as the total number of

bidders, n, increases, the fraction 1
n−1

becomes small and the bundle auction comes close

to the optimal sequential auction.

The three different allocation rules are visualized in figure 1 for m = n = 2 and

20A detailed proof of this claim can be found in a previous version of this paper, Grimm (2004).
21See e. g. Hadar and Russell (1969), Theorem 4.
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FC(x) = x. The incumbent’s cost are plotted on the ordinate and the contestant’s cost

on the horizontal axis. Each line represents the second period allocation rule in one of the

mechanisms, as indicated. To the left of the respective line the second period contract is

awarded to the contestant, to the right of the line to the incumbent. Note that in none of

the mechanisms the allocation depends on the incumbent’s distribution. Thus, the picture

applies to both cases, substitutes and complements. Obviously, the allocation rule of the

Figure 1: Visualization of the three period–two–allocation rules.

bundle auction is always closer to the optimal auction than the efficient second price rule.

The figure can also be used to illustrate why in the case of complements (which is

the case where it is quite natural to think about bundling) our result applies also to first

price auctions, but this is not necessarily true in case of substitutes. Observe first that

first and second price bundle auctions are revenue equivalent. As established by Jeitschko

and Wolfstetter (2002) and Jofre-Bonet and Pesendorfer (2005), the sequential first price

auction yields higher procurement cost than the sequential second price auction if the

contracts are complements. Graphically this means that the line representing the first price

auction allocation rule is located to the right of the second price auction line22, and thus,

22This can also be seen in Jofre–Bonet and Pesendorfer (2005) who use the same graph to provide

intuition for their ranking of first and second price sequential auctions.
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the ranking of bundle and sequential first price auction is unambiguous. For substitutes,

the first price allocation rule lies to the left of the second price allocation rule, i. e. in the

same direction as the bundle auction. Thus, a comparison is ambiguous and likely depends

on the incumbent’s distribution (which affects procurement cost in the first price, but not

in the bundle auction).

6 Discussion and Concluding Remarks

In this paper, we have compared sequential and bundle procurement auctions of two con-

tracts, where competition for the second contract may be more intense. We have found

that a bundle auction yields a lower and less risky procurement cost than the sequential

second price auction, which still exceeds procurement cost in the optimal sequential auc-

tion. However, while in the bundle auction and in the optimal sequential auction the final

allocation is inefficient, the sequential second price auction achieves the efficient allocation.

Procurement cost is less risky in the bundle auction than in the sequential second price

auction, since here the incumbent is paid the expected cost of the second contract at stage

one, where provision of the second object is delegated to him. In all auctions we analyzed,

the incumbent faces the risk of making an overall loss if the contracts are complements,

since he gambles on the value of incumbency in his first stage bid.

Our findings imply that the choice of mechanism clearly depends on the objectives of

the auctioneer. If efficiency is the predominant concern (which is plausible if the auctioneer

is a public authority), the sequential auction is the appropriate mechanism among the

mechanisms considered here. If the auctioneer maximizes revenue (e. g. a private sector

firm), a bundle auction is a good choice. As we have shown, the allocation rule of the bundle

auction is quite ”close” to the optimal allocation rule. Moreover, the bundle auction even

has some advantages compared to the optimal sequential auction: First, procurement cost

is less risky since the stage two–price risk is borne by the incumbent. Second, whereas in

the optimal sequential auction the auctioneer has an incentive to deviate from the rules he

announced for stage two after the first period is over, in bundle auction this problem does

not occur.23

Let us conclude with two considerations beyond the analysis of this paper. First, con-

sider the case that the incumbent’s comparative advantage is endogenous, i. e. has to

23In fact, the auctioneer does not have an incentive to prohibit resale before or after the bundle auction.
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be induced by specific investment. Then, there will be no incentive to incur such cost

in the bundle auction (where, by specific investment, the incumbent would only decrease

his expected profits from subcontracting), while the sequential auction might give rise to

”wasteful” expenditures that only aim at discriminating against potential competitors in

the second auction. Second, the choice of mechanism may have an impact on the compe-

tition for the second production right. In the bundle and the optimal sequential auction,

strong singleproduct bidders are discriminated against even more than the contestants.

Therefore, their incentives to enter the game are presumably lower in those auctions than

in the sequential second price auction.

A The Value of Incumbency

In order to prove that E[ΠI
2]−E[ΠC

2 ] > (<)0 if the objects are complements (substitutes),

we define the vector of all bidders’ expected cost for the second item except the incumbent’s

and one (representative) contestant’s cost by X̃ := (Xi), i 6= 1, 2. We denote by X̃(1) the

lowest cost among those bidders and by F̃(1) (f̃(1)) the corresponding c.d.f (density function).

Now we can decompose as follows:

E[ΠI
2] = E

[

XC − X1; X1 ≤ XC ≤ X̃(1)

]

+ E

[

X̃(1) − X1; X1 ≤ X̃(1) ≤ XC

]

(12)

and (13)

E[ΠC
2 ] = E

[

X1 − XC ; XC ≤ X1 ≤ X̃(1)

]

+ E

[

X̃(1) − XC ; XC ≤ X̃(1) ≤ X1

]

.

First, we derive E[ΠC
2 ]. We get

E[ΠC
2 ] =

∫ 1

0

[

(1 − F̃(1)(v))

∫ v

0

FC(u)du

]

f1(v)dv (14)

+

∫ 1

0

[

(1 − F1(v))

∫ v

0

FC(u)du

]

f̃(1)(v)dv.

Integration by parts of the second term in (14) yields
∫ 1

0

[

(1 − F1(v))

∫ v

0

FC(u)du

]

f̃(1)(v)dv (15)

=

∣

∣

∣

∣

(1 − F1(v))

∫ v

0

FC(u)duF̃(1)(v)

∣

∣

∣

∣

1

0

−

∫ 1

0

F̃(1)(v)

[

(1 − F1(v))FC(v) − f1(v)

∫ v

0

FC(u)du

]

dv

= −

∫ 1

0

F̃(1)(v)

[

(1 − F1(v))FC(v) − f1(v)

∫ v

0

FC(u)du

]

dv.
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Inserting (15) in (14) gives

E[ΠC
2 ] =

∫ 1

0

∫ v

0

FC(u)dudv −

∫ 1

0

F̃(1)(v)(1 − F1(v))FC(v)dv (16)

= |F1(v)

∫ v

0

FC(u)du|10 −

∫ 1

0

F1(v)FC(v)dv

−

∫ 1

0

F̃(1)(v)(1 − F1(v))FC(v)dv,

which yields

E[ΠC
2 ] =

∫ 1

0

(1 − F̃(1)(v))(1 − F1(v))FC(v)dv. (17)

Following the same calculations, we get

E[ΠI
2] =

∫ 1

0

(1 − F̃(1)(v))F1(v)(1 − FC(v))dv. (18)

Clearly, if XC is exceeds (falls short of) X1 in the sense of first order stochastic dominance,

it holds that (1−F1(v))FC(v) < (>)F1(v)(1−FC(v)) for every v ∈ [0, 1], which proves the

assertion. �

B The Optimal Sequential Auction

In this section we derive the optimal auction rule under the assumption that the auc-

tioneer has to fix it before period one and cannot change it between the periods. We

know that we can restrict our attention to direct incentive compatible mechanisms. We

denote such a mechanism by the quadruple of vectors (φ1(q), φ2(x), t1(q), t2(x)), where

φk
i (·) is the probability that firm i is awarded the contract in period k given that reports

q (respectively x) have been made and tki (·) denotes the transfer to i in period k given

the reports. Let Φ1
i (qi) and T 1

i (qi) denote the expected probability to win and the ex-

pected transfer in period one if firm i reports qi and the remaining firms report truthfully,

i. e. Φ1
i (qi) =

∫

[Q,Q]m
φ1

i (q)dG−i(q−i) and T 1
i (qi) =

∫

[Q,Q]m
t1i (q)dG−i(q−i). Define Φ2

i (xi) and

T 2
i (xi) analogously, accounting for the fact that we potentially have more bidder in period

two, i. e. n ≥ m. Then, the expected profits of firm i from period one and two if its cost
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are qi and xi but it reports q̂i and x̂i are given by

π2
i (xi, x̂i) = T 2

i (x̂i) − xiΦ
2
i (x̂i) (19)

π1
i (qi, q̂i) = T 1

i (q̂i) − qiΦ
1
i (q̂i) + Φ1

i (q̂i)

∫ 1

0

π2
1(s, s)f1(s)ds (20)

+(1 − Φ1
i (q̂i))

∫ 1

0

π2
C(s, s)fC(s)ds

The incentive constraints require that

π1
i (qi, qi) ≥ π1

i (qi, q̂i) for all q̂i 6= qi, (IC1)

π2
i (xi, xi) ≥ π2

i (xi, x̂i) for all x̂i 6= xi, (IC2)

and the participation constraints require that

π2
i (xi, xi) ≥ 0, (PC2)

π1
i (qi, qi) ≥

∫ 1

0

π2
C(s, s)fC(s)ds. (PC1a)

∫ 1

0

π2
C(s, s)fC(s)ds ≥

∫ 1

0

π2
S(s, s)fC(s)ds (PC1b)

From (IC1) and (IC2) it follows that Φk
i (·), k = 1, 2, is monotone decreasing and a bidder’s

expected equilibrium profit is determined by the probability of winning up to a constant

(which determines the bidder’s profit if he observes his worst possible type), i. e. π1
i (qi, qi) =

∫ Q

qi
Φ1

i (s)ds + π1
i (Q,Q), and analogously for π2

i (xi, xi).
24 Note that from the last equation

it follows (integration by parts) that
∫ Q

Q

π1
i (qi, qi)gi(qi)dqi =

∫ Q

Q

Φ1
i (qi)Gi(qi)dqi + π1

i (Q,Q),

∫ 1

0

π2
i (xi, xi)fi(xi)dxi =

∫ 1

0

Φ2
i (xi)Fi(xi)dxi + π2

i (1, 1).

This leads to the following expected transfers of bidder i in period one and two, respectively,

T 2
i (xi) = π2

i (xi, xi) + xiΦ
2
i (xi) (21)

=

∫ 1

xi

Φ2
i (s)ds+ π2

i (1, 1) + xiΦ
2
i (xi)

T 1
i (qi) = π1

i (qi, qi) + qiΦ
1
i (qi) − Φ1

i (qi)

∫ 1

0

π2
1(s, s)f1(s)ds (22)

−(1 − Φ1
i (qi))

∫ 1

0

π2
C(s, s)fC(s)ds

24See, for example, Krishna (2002), pp. 63 ff.
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Now we compute the sum of expected transfer payments to the bidders which the

auctioneer aims to minimize:
m
∑

i=1

∫ Q

Q

T 1
i (qi)gi(qi)dqi =

m
∑

i=1

[

∫ Q

Q

π1
i (qi, qi)gi(qi)dqi +

∫ Q

Q

qiΦ
1
i (qi)gi(qi)dqi

]

−

m
∑

i=1

Φ1
i (qi)

∫ 1

0

π2
1(s, s)f1(s)ds

−

m
∑

i=1

(1 − Φ1
i (qi))

∫ 1

0

π2
C(s, s)fC(s)ds

=

m
∑

i=1

[

∫ Q

Q

Gi(qi)Φ
1
i (qi)dqi + π1

i (Q, Q) +

∫ Q

Q

qiΦ
1
i (qi)gi(qi)dqi

]

−

∫ 1

0

π2
1(s, s)f1(s)ds − (m − 1)

∫ 1

0

π2
C(s, s)fC(s)ds

=

∫

[Q,Q]m

m
∑

i=1

(

qi +
Gi(qi)

gi(qi)

)

φ1
i (q)dG(q) +

m
∑

i=1

π1
i (Q, Q)

−

∫ 1

0

F1(s)Φ
2
1(s)ds − π2

1(1, 1) − (m − 1)

∫ 1

0

FC(s)Φ2
C(s)ds

−(m − 1)π2
C(1, 1).

n
∑

i=1

∫ 1

0

T 2
i (xi)fi(xi)dxi =

n
∑

i=1

∫ 1

0

Fi(xi)Φ
2
i (xi)dxi +

n
∑

i=1

π2
i (1, 1)

+

n
∑

i=1

∫ 1

0

xiΦ
2
i (xi)fi(xi)dxi.

Adding both terms we get the expected transfer to the firms:

E[T ] =

∫

[Q,Q]m

m
∑

i=1

(

qi +
Gi(qi)

gi(qi)

)

φ1
i (q)dG(q) +

m
∑

i=1

π1
i (Q, Q)

+

n
∑

i=1

∫ 1

0

xiΦ
2
i (xi)fi(xi)dxi +

n
∑

i=m+1

∫ 1

0

Fi(xi)Φ
2
i (xi)dxi +

n
∑

i=m+1

π2
i (1, 1).

Adding and subtracting the term m ·
∫ 1

0
π2

C(xC , xC)fc(xC)dxC = m ·
∫ 1

0
FC(xC)Φ2

C(xC)dxC

and subtracting n−m
n−1

[

∫ 1

0
ΦC(s)FC(s)ds−

∫ 1

0
ΦS(s)FC(s)ds

]

(= 0 due to (PC1b)) yields an

expression that allows to determine the optimal auction rule:

E[T ] =

∫

[Q,Q]m

m
∑

i=1

(

qi +
Gi(qi)

gi(qi)

)

φ1
i (q)dG(q)

+

m
∑

i=1

[

π1
i (Q, Q) −

∫ 1

0

π2
C(xC , xC)fc(xC)dxC

]

∫

[0,1]n

(

x1φ
2
1(x1) +

m
∑

C=1

[

xC +
n

n − 1

FC(xC)

fC(xC)

]

φ2
C(xC)

+

n
∑

s=m+1

[

xs +
1

n − 1

FC(xs)

fC(xs)
+

Fs(xs)

fs(xs)

]

φ2
s(xs)

)

f(x)dx +

n
∑

i=m+1

π2
i (1, 1)
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At the first stage, if the firms are symmetric, a standard first or second price auction is

optimal. At the second stage, the optimal auction favors the incumbent and discriminates

against the contestants and the single product bidders. The reason is that decreasing a

contestant’s expected profits from the second stage makes the stage one–bids more com-

petitive. In the above formula, the incumbent is indexed by ”1”, and the contestants and

singleproduct bidders by ”C and S, respectively. The optimal mechanism is stated in

proposition 3.
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