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Abstract

Using approximations of the score of the log-likelihood function we derive optimal

moment conditions for estimating spatial regression models. Our approach results

in computationally simple and robust estimators. The moment conditions resemble

those proposed by Kelejian & Prucha (1999), hence we provide an intuitive inter-

pretation of their estimator as a second order approximation to the log-likelihood

function. Furthermore we propose simplified and efficient GMM estimators based

on a convenient modification of the moment conditions. Heteroskedasticity robust

versions of our estimators are also provided. Finally, a first order approximation

for the spatial lag model is also considered. Monte Carlo results suggest that a

simple just-identified estimator based on a quadratic moment derived from a first

order approximation of the score of the log-likelihood function performs similar to

the GMM estimator proposed by Kelejian & Prucha (2010).
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1 Introduction

Spatial regression models have gained increasing popularity in applied economics dur-

ing the last two decades, for example, when estimating regional spillovers and peer

effects among economic agents.1 As Anselin (2010) puts it, the field of spatial econo-

metrics has moved “from the margins in applied urban and regional science to the

mainstream of economics and other social sciences”.

Recently much progress has been made in the estimation of spatial models. In

particular, starting with the pioneering work of Kelejian & Prucha (1999) General-

ized Method of Moments (GMM) estimators have been developed as an alternative

to Maximum-likelihood (ML) estimation of spatial regression models.2 The main ad-

vantage of GMM methods is that the inversion of n× n matrices in each iteration step

is avoided, which become computationally demanding whenever the sample size n is

large. Furthermore, GMM estimators require weaker distributional assumptions and

are robust to heteroskedasticity and deviations from normality, cf. (Kelejian & Prucha

1999, Anselin 1988, Lin & Lee 2010).

In this paper we focus on GMM estimation of regression models with exogenous

regressors and spatial error correlation as introduced by Cliff & Ord (1973), often re-

ferred to as the SARAR(0,1) model. Additionally we consider GMM estimation of the

spatial lag (Durbin) model (SARAR(1,0)). However, the proposed estimators can eas-

ily be employed for estimating more general spatial models, such as the SARAR(1,1)

model. Another possible extension is the estimation of spatial panel data models, see

(Kapoor et al. 2007).

The main contribution of this paper is the idea to derive optimal moment condi-

tions by applying approximations to the first order condition of the ML estimator. In

1 Some recent applications are Lin (2010), Piras et al. (2012), Kelejian et al. (2013), de Dominicis et al.
(2013) and Brady (2014). For a list of applications from 1991 until 2007 see Kelejian & Prucha (2010).

2 The work of Kelejian & Prucha (1999) as well as Kelejian & Prucha (1998) is developed further in
articles by Kelejian & Prucha (2001, 2007, 2010), Lee (2003, 2004, 2007), Lin & Lee (2010) Liu et al. (2010),
Arnold & Wied (2010) and Drukker et al. (2013) among others.
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the following we call the resulting estimators Maximum Likelihood Approximate Moment

(MLAM) estimators. We apply two approximations and find that the resulting mo-

ment conditions resemble the ones proposed by Kelejian & Prucha (1999). Hence, we

argue that their estimator can be interpreted as an approximation of the score of the

log-likelihood function. Second, we derive efficient GMM estimators with computa-

tionally simplified optimal weighting matrices. Following the approach of Kelejian &

Prucha (2010) as well as Lin & Lee (2010) we also propose heteroskedasticity-robust

versions of all our estimators. Third, we carry out Monte Carlo simulations in order

to investigate the performance of alternative estimators under different sample sizes

as well as both, homoskedastic and heteroskedastic errors. As expected, the efficient

GMM estimator based on our moment conditions performs similarly to the one us-

ing the moments of Kelejian & Prucha (2010). Moreover, the results suggest that the

proposed simple moment estimators based on a single quadratic moment condition

perform very well in comparison to all other GMM estimators. This is remarkable as

the proposed simple estimators are computationally less demanding than the overi-

dentified GMM estimators involving optimal weighting of the moment conditions.

The paper is structured as follows. In section 2 we present the spatial autoregres-

sive model and outline the GMM approach of Kelejian & Prucha (1999). Approximate

moment conditions underlying our MLAM estimators, as well as their asymptotic dis-

tribution are derived in section 3. In section 4 we propose simplified efficient GMM

estimators, whose heteroskedasticity robust modifications are presented in section 5.

GMM estimation of the spatial lag model is considered in section 6. Some Monte Car-

los results on the performance of the proposed estimators are discussed in section 7,

and section 8 concludes.
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2 The spatial autoregressive model

We focus on the linear regression model with spatially correlated errors given by

y = Xβ + u (1)

u = ρ0Mnu + ε, (2)

where the vector y = [y1, . . . , yn]′ comprises the observations of the dependent vari-

able, X is a n × k matrix of exogenous regressors and u is the n × 1 vector of distur-

bances with E(u|X) = E(u) = 0. The spatial dependence among the elements of

the error vector u is represented by the spatial error model (2). In what follows, let

Bn(ρ) ≡ (In − ρMn), where In denotes the n×n identity matrix. The model assump-

tions can be summarized as follows:

Assumption 1. (a) The regressor matrix is strictly exogenous with E(u|X) = 0 and (b)

n−1X′X has full rank for all n.

Assumption 2. The elements εi of the vector ε are i.i.d. with E(εi) = 0, E(ε2
i ) = σ2

0 > 0,

and E(|εi|4+δ) < ∞ for some positive constant δ.

Assumption 3. (a) The spatial weight matrix Mn has zeros on the leading diagonal. (b)

|ρ0| < 1. (c) The matrix Bn(ρ) is non-singular for |ρ| < 1.

Assumption 4. (a) ∑n
j=1 |mij,n| < Cm and ∑n

i=1 |mij,n| < Cm for all 1 ≤ i, j ≤ n and some

positive constant Cm < ∞, where mij,n denotes the (i, j)-element of Mn. (b) ∑n
j=1 |bij,n| < Cb

and ∑n
i=1 |bij,n| < Cb for all 1 ≤ i, j ≤ n and some positive constant Cb < ∞, where bij,n

denotes the (i, j)-element of Bn(ρ) with |ρ| < 1 and Cb may depend on ρ.

These assumptions are standard in the literature on GMM estimation of the linear spa-

tial error model (e.g. Kelejian & Prucha (1999), Lee (2003) and Lin & Lee (2010)). Typ-

ically the row sums of the spatial weight matrix Mn are normalized to unity. If in
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addition all elements of Mn are non-negative, which is usually the case in empirical

applications, assumptions 3 (c) and 4 (a) will hold as noted by Lee (2003). However,

row-normalization also implies that Mn may depend on the sample size n and, thus,

form triangular arrays, as noted by Kelejian & Prucha (1999).

If in model (1) β is unknown, i.e. u is unobserved, we need the following additional

assumption for the identification of ρ0:

Assumption 5. Let β̂ be an initial estimate of β in (1). β̂ is estimated by a consistent

estimator of β with β̂− β = Op(n−
1
2 ).

An estimator that satisfies assumption 5 is the OLS estimator of model (1). Given

β̂, one can apply any of the estimators discussed below on the residuals û = y− Xβ̂ =

u − X(β̂ − β) in order to obtain a consistent estimate ρ̂ of the spatial autoregressive

parameter ρ0. A consistent and asymptotically efficient estimator of β is the the two-

step GLS estimator

β̂gls,n =
[
X′(In − ρ̂M′n)(In − ρ̂Mn)X

]−1 X′(In − ρ̂M′n)(In − ρ̂Mn)y.

According to Assumption 5 we have û = u + Op(n−1/2) and we treat u (resp. β) as

known for now. The log-likelihood function of the model results as

`(ρ, σ2) =− n
2

ln 2π − n
2

ln σ2 + ln |Bn(ρ)| −
1

2σ2 u′Bn(ρ)
′Bn(ρ)u . (3)

Concentrating out σ2 yields the first order condition for maximizing the log likelihood

E

[
u′Bn(ρ0)

′
(

MnBn(ρ0)
−1 − 1

n
tr
{

Bn(ρ0)
−1Mn

}
In

)
Bn(ρ0)u

]
= 0 . (4)

Note that the first order condition involves the inverse of an n× n matrix Bn(ρ0) which

becomes computationally demanding for sample sizes typically encountered in empir-

ical practice. To sidestep this difficulty Kelejian & Prucha (1999) propose a method of
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moments approach for estimating ρ and σ2 based on the three moment conditions

E

(
1
n

ε′ε

)
= σ2

0 , E

(
1
n

ε̄′ ε̄

)
= σ2

0
1
n

tr(M′nMn) , E

(
1
n

ε̄′ε

)
= 0 , (5)

where ε = u− ρ0ū, ε̄ = ū− ρ0 ¯̄u, ū = Mnu and ¯̄u = Mnū. Substituting the first of these

moment conditions into the second and rewriting ε = Bn(ρ0)u yields the quadratic

moment conditions

m1,n(ρ0) = E

[
1
n

u′Bn(ρ0)
′MnBn(ρ0)u

]
= 0 (6)

and m2,n(ρ0) = E

[
1
n

u′Bn(ρ0)
′MnBn(ρ0)u

]
= 0, (7)

where Mn = M′nMn − tr(n−1M′nMn)In. In Section 3 we analyze how these moment

conditions are related to the score of the log-likelihood function (i.e. the first order

condition for maximizing the log-likelihood). As outlined in Prucha (2014) it can be

shown that minimizing the unweighted objective function based on the moment con-

ditions in (5) is equivalent to minimizing SKP = mn(ρ)′WKP,n mn(ρ) with mn(ρ) =

[m1,n(ρ), m2,n(ρ)]
′ and the weighting matrix WKP,n = diag{1, v} with v = 1/

[
1 +(

n−1 tr{M′nMn}
)2]. We refer to this estimator as the original KP estimator in the fol-

lowing. Note that WKP,n is not the optimal weighting matrix. From the theory of GMM

estimation we know that an estimator minimizing the objective function

SW,n(ρ) = mn(ρ)
′Wn(ρ0)mn(ρ) with Wn(ρ0) =

[
E

(
1
n

mn(ρ0)mn(ρ0)
′
)]−1

(8)

is asymptotically efficient. In Section 4 we propose a simple representation of the mo-

ment conditions that allows us to easily estimate the weighting matrix Wn(ρ0).
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3 MLAM estimators

If ε is normally distributed, the efficient moment condition for estimating the parame-

ter ρ0 is the score of the log-likelihood function given in (4).

Under Assumptions 3 and 4 we have

Bn(ρ0)
−1 = (I − ρ0Mn)

−1 = In + ρ0Mn + ρ2
0M2

n + · · · . (9)

Using this expansion, truncating it after the first term such that Bn(ρ)−1 ≈ In (e.g. by

assuming ρ0 ≈ 0) and dividing by n (4) yields the moment condition

m1,n(ρ0) = E

[
1
n

u′Bn(ρ0)
′
(

Mn −
1
n

tr{Mn}In

)
Bn(ρ0)u

]
= E

(
1
n

u′Bn(ρ0)
′MnBn(ρ0)u

)
= 0, (10)

which clearly holds under assumptions 2 and 3 (a). Replacing u by its empirical coun-

terpart û this moment condition is sufficient to identify the spatial autoregressive pa-

rameter ρ0 such that it is possible to construct a simple method of moments estimator.

In what follows we call the resulting estimator the First Order Maximum Likelihood Ap-

proximate Moment (MLAM1) estimator. The moment condition in (10) can be rewritten

as a quadratic polynomial in ρ with the two roots

ρ̂+ = pn +
√

qn

and ρ̂− = pn −
√

qn ,
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where

pn =
u′M′nMnu + u′M2

nu
2 u′M′nM2

nu

qn =

(
u′M′nMnu + u′M2

nu
2 u′M′nM2

nu

)2

− u′Mnu
u′M′nM2

nu
.

The MLAM1 estimator ρ̂1 is the root that satisfies Assumption 3 (b), where in the above

expressions u is replaced by û, yielding p̂n and q̂n. Since q̂n may be negative, it is

possible that no real solution exists. In this case the unique estimator is found by setting

qn equal to zero. This is equivalent to minimizing the squared moment m̂1,n(ρ)
2 (the

empirical counterpart of m1,n(ρ)
2, where in (10) u is replaced by û) which is due to the

fact that the moment function is symmetric around the minimum.3

In order to improve the approximation of (4) we may truncate the expansion (9) at

the second term such that Bn(ρ)−1 ≈ In + ρMn yielding the Second Order Maximum

Likelihood Approximate Moment (MLAM2) estimator based on the moment condition

m2,n(ρ0) = E

[
1
n

ε′
(

Mn(In + ρ0Mn)−
1
n

tr
{
(In + ρ0Mn)Mn

}
In

)
ε

]
= 0.

Under assumptions 2 and 3 (a) this condition holds, since in the case of homoskedas-

tic disturbances E
[
ε′
(

diag{ρ0M2
n} − 1

n tr{ρ0M2
n}In

)
ε
]
= 0, where diag{ρ0M2

n} rep-

resents a diagonal matrix constructed by the diagonal elements of the matrix ρ0M2
n.

Moreover, it is easy to show that the moment condition can be rewritten as

m2,n(ρ0) = E
[ 1

n
ε′
(

Mn + ρ0M̃n
)
ε
]
, (11)

where M̃n := M2
n − n−1 tr(M2

n)In. Note that for a symmetric spatial weight matrix

3 Due to this symmetry, for any pair of values with mn(ρ1) = mn(ρ2) it follows that the minimum
is obtained as mn

(
ρ1+ρ2

2

)
. Since in our case ρ1 and ρ2 are complex conjugate roots with mn(ρ1) =

mn(ρ2) = 0, it follows that (ρ1 + ρ2)/2 is just the real part of the two solutions.
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Mn = M′n the moment is equivalent to a linear combination of the moments suggested

by Kelejian & Prucha (1999). In the case that Mn is asymmetric, which is usually the

case if the row sums of Mn are normalized, MLAM2 exploits similar but not identical

information. Substituting ε by (In − ρ0Mn)u, the moment condition can be written as

a cubic polynomial in ρ:

m2,n(ρ0) =E

[
1
n

(
u′Mnu + ρ0u′(M̃n−M2

n−M′nMn)u

+ ρ2
0u′(M′nM2

n−M̃nMn−M′nM̃n)u + ρ3
0u′M′nM̃nMnu

)]
= 0. (12)

Now let m̂2,n(ρ) be the empirical counterpart of (12) with u replaced by û. The MLAM2

estimator ρ̂2 is the real root of m̂2,n(ρ) that satisfies Assumption 3 (b).4 In a similar man-

ner the m’th order approximation to the scores can be obtained from replacing Bn(ρ)

by I + ρMn + · · · + ρm−1Mm−1
n . For m → ∞ the m’th order MLAM converges to the

ML estimator. Since the computational advantage over the ML estimator gets lost for

MLAM estimators with m > 2 we focus on the first and second order approximation.

The moments of the MLAM estimator can be represented as a quadratic form given

by

mk,n(ρ0) = E

[
1
n

ε′Ak,n(ρ0)ε

]
, (13)

where

A1,n(ρ0) = Mn (14)

A2,n(ρ0) = Mn + ρ0M̃n. (15)

4 In principle all real roots may be out of the domain (−1, 1). While this occurs very rarely and only
for extreme values of ρ0 a simple and tractable solution of this issue is to minimize |m̂2,n(ρ)| under the
constraint |ρ| ≤ 1 whenever all real roots lie outside the domain [−1, 1]. In the even more exceptional
case that the solution is not unique, because more than one real roots lie in the domain (−1, 1), it is less
straight forward to determine ρ̂2. However, unreported simulations suggest that this is not a relevant
issue in practice.
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Let εi denote the i’th element of the vector ε and ak,ij,n the (i, j)-element of Ak,n(ρ0).

Using similar representations as Born & Breitung (2011) we can rewrite mk,n(ρ0) as

follows:

1
n

ε′Ak,n(ρ0)ε =
1
n

n

∑
i=1

n

∑
j=1

ak,ij,nεiε j

=
1
n

n

∑
i=2

εiξk,i−1,n +
1
n

n

∑
i=1

ak,ii,nzi , (16)

where zi = ε2
i − σ2

0 ,
n
∑

i=1
ak,ii,n = 0, and

ξk,i−1,n =
i−1

∑
j=1

(ak,ij,n + ak,ji,n)ε j for i ≥ 2. (17)

Under Assumption 4 (a) the variance of ξk,i−1,n is finite for all i and n.

Under assumption 2 it holds that E(εi|ξk,i−1,n) = 0, E(zi) = E(zi|ε j) = 0 for j 6= i

and that ∑n
i=2 εiξk,i−1,n and ∑n

1=1 ak,ii,nzi are uncorrelated. Note also that the latter sum

is equal to zero for k = 1 (the MLAM1 estimator) since all diagonal elements of the

matrix A1,n(ρ0) equal zero. Furthermore, ξk,i,n is a martingale difference sequence with

respect to the increasing sigma-algebra generated by {ε1, . . . , εi−1}. The central limit

theorem for martingale difference sequences yields

√
n ε′Ak,n(ρ0)ε

d→ N (0, Vk),

where

Vk = σ4
0 lim

n→∞

[(
1
n

n

∑
i=2

i−1

∑
j=1

(ak,ij,n + ak,ji,n)
2

)
+ κ4

(
1
n

n

∑
1=1

a2
k,ii,n

)]
, (18)

where κ4 = E(ε4
i )/σ4

0 − 1 (with κ4 = 2 for normally distributed errors). With these

results the limiting distribution of the MLAM estimator can be derived.
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Theorem 1. Under Assumptions 1 to 5 and n → ∞ the k’th order MLAM estimators are

asymptotically distributed as

√
n(ρ̂k − ρ0)

d→ N (0, Vk/ψ2
k), for k = 1, 2

where Vk is defined in (18) and

ψ1 = lim
n→∞

E

[
1
n

u′(2ρM′nM2
n −M′nMn −M2

n)u
]

ψ2 = lim
n→∞

E

[
1
n

u′(M̃n−M2
n −M′nMn)u + 2ρu′(M′nM2

n − M̃nMn −M′nM̃n)u

+ 3ρ2u′M′nM̃nMnu
]

.

The proof of Theorem 1 is provided in the appendix.

In practice, the asymptotic variances can be consistently estimated by the respective

sample moments based on û and by inserting the estimator

κ̂4 =

(
1

nσ̂4

n

∑
i=1

ε̂4
i

)
− 1, (19)

where ε̂i is the i’th element of the vector ε̂ = (I − ρ̂Mn)û. Note also that the limiting

distribution is invariant to the error variance σ2
0 since the factor σ4

0 drops from the

asymptotic variance Vk/ψ2
k .

4 Efficient GMM estimators

As outlined in Section 2 the original GMM estimator suggested by Kelejian & Prucha

(1999) based on the moment conditions (6) and (7) is not efficient. Kelejian & Prucha

(2010) and Drukker et al. (2013) propose GMM estimators with optimal weighting ma-

trices Wn as defined in (8). In this section we employ a simpler approach to obtain
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an asymptotically efficient GMM estimator based on the empirical counterpart of the

moment vector mn(ρ) = [m1,n(ρ), m2,n(ρ)]
′ or m∗n(ρ) = [m1,n(ρ), m̃2,n(ρ)]

′ with m2,n(ρ)

defined in (7) and m̃2,n(ρ) = E(n−1ε′M̃nε). Since m2,n(ρ) = m1,n(ρ) + ρm̃2,n(ρ), which

is easily seen in (11), the MLAM2 estimator is based on a linear combination of the

moments in m∗n(ρ).

As in Section 3 we represent the first moment condition of the original KP estimator

as

m1,n(ρ0) = E

(
1
n

ε′Mnε

)
= E

(
1
n

n

∑
i=2

η1,i,n

)
= 0 (20)

with η1,i,n = εiξ1,i−1,n, where ξ1,i−1,n is defined in (17), whereas the second moment

condition can be represented as

m2,n(ρ0) = E

(
1
n

ε′Mnε

)
= E

(
1
n

n

∑
i=1

η2,i,n

)
= 0, (21)

η2,1,n = m11,nz1, η2,i,n = ∑i−1
j=1 εi(mij,n + mji,n)ε j + mii,nzi for i = 2, ..., n, where mij,n is

the (i, j)-element of Mn and zi = ε2
i − σ2

0 .

It should be noted that E

(
n
∑

i=1
mii,nzi

)
= 0 so that this term can be neglected when

minimizing the criterion function. It is required only for computing the weighting

matrix, which is typically held fix during the iterative minimization.

Using the results of Section 3 it is not difficult to show that ηi,n = [η1,i,n, η2,i,n]
′ is

a martingale difference sequence with respect to the increasing sigma-algebra gener-

ated by {η1,n, . . . , ηi−1,n}. Invoking the central limit theorem for martingale difference

sequences yields

1√
n

n

∑
i=1

ηi,n
d→ N (0,Vη) , (22)
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where Vη = lim
n→∞

Vη,n and

Vη,n = E

(
1
n

n

∑
i=1

ηi,nη′i,n

)
. (23)

Let ε̂n(ρ) = (In − ρMn)û and η̂i,n(ρ) is constructed as ηi,n ≡ ηi,n(ρ0), where εi is re-

placed by the i’th element of ε̂n = I− ρ̂Mn. An asymptotically efficient GMM estimator

based on the KP moment conditions results from minimizing the objective function

Q̂n(ρ) =

(
1
n

n

∑
i=1

η̂i,n(ρ)

)′
Ŵn(ρ̂)

(
1
n

n

∑
i=1

η̂i,n(ρ)

)
, (24)

with

Ŵn(ρ̂) =
(
V̂η,n

)−1
=

[
1
n

n

∑
i=1

η̂i,n(ρ̂)η̂i,n(ρ̂)
′
]−1

From the law of large numbers it follows that under assumptions 1 to 5 the estimator

Ŵn(ρ̂) is consistent for the optimal weighting matrix Wn(ρ0) whenever the estimate

ρ̂ is consistent for ρ0. For example, a consistent initial estimate may be obtained by

letting Wn = WKP,n as in the original approach by Kelejian & Prucha (1999).

The asymptotic distribution of the efficient GMM estimator is presented in the fol-

lowing theorem.

Theorem 2. Under Assumptions 1 to 5 and n → ∞ the efficient GMM estimator ρ̂opt =

argmin{Q̂n(ρ)} with Q̂n(ρ) based on the moment vector m̂n(ρ) = [m̂1,n(ρ), m̂2,n(ρ)]
′ and

defined in (24) possesses the limiting distribution

√
n(ρ̂opt − ρ0)

d→ N
(
0, [δ(ρ0)

′W(ρ0)δ(ρ0)]
−1),

12



where W(ρ0) = lim
n→∞

Wn(ρ0) and δ(ρ0) = lim
n→∞

δn(ρ0) with

δn(ρ0) =
1
n

 u′(2ρ0M′nM2
n −M′nMn −M2

n)u

u′(2ρ0M′nMnMn −M′nMn −MnMn)u

 .

The proof of theorem 2 is provided in the appendix.

In practice the variance of ρ̂opt can be consistently estimated by

Vρ̂opt =
1
n

[
δ̂n(ρ̂opt)

′Ŵn(ρ̂opt)δ̂n(ρ̂opt)
]−1

(25)

where δ̂n(ρ̂opt) =
1
n

 û′(2ρ̂optM′nM2
n −M′nMn −M2

n)û

û′(2ρ̂optM′nMnMn −M′nMn −MnMn)û

 .

The asymptotic distribution of the GMM version of the MLAM estimator based on the

moment vector m∗n(ρ) = [m1,n(ρ), m̃2,n(ρ)]
′ results easily from replacing the elements

of Mn by the elements of M̃n when constructing η2,i,n and δn(ρ). Asymptotically this

estimator may yield a smaller variance than the MLAM2 estimator if there exists some

superior linear combination of m1,n(ρ) and m̃2,n(ρ) than m1,n(ρ) + ρm̃2,n(ρ).

5 Heteroskedastic and non-Gaussian errors

The MLAM1 estimator is based on the empirical counterpart of the moment m1,n(ρ0) =

E(ε′Mnε) which remains valid under heteroskedastic and non-Gaussian errors. In con-

trast, the original KP estimator and the MLAM2 estimator, including their efficient

GMM variants presented in section 4, are inconsistent if the errors are heteroskedastic.

This is due to the fact that E(zi) = E(ε2
i ) − σ2

0 may be different from zero (see eqs.

(16) and (21)). Furthermore, the asymptotic variances of the estimators presented in

13



Theorems 1 and 2 require homoskedastic errors (see Assumption 2).

In order to cope with this shortcoming, Kelejian & Prucha (2010) as well as Liu

et al. (2010) and Lin & Lee (2010) propose the alternative moment condition mh
2,n(ρ) =

E
[
ε′
(

M′nMn − diag{M′nMn}
)
ε
]
= E(ε′M0,nε), where diag{M′nMn} represents a diag-

onal matrix constructed by the diagonal elements of the matrix M′nMn. Accordingly,

the matrix M0,n is obtained by setting the diagonal elements of M′nMn equal to zero.

Similarly, a heteroskedasticity robust modification for the MLAM2 moment condition

m2,n(ρ) is given by mh
2,n(ρ) = E[ε′(Mn + ρM̃0,n)ε] with M̃0,n = M2

n − diag{M2
n}.

These heteroskedasticity robust moments can easily be constructed by dropping the

terms depending on zi = ε2
i − σ2

0 in (16) and (21). For the MLAM2 estimator the robust

moment condition results as

mh
2,n(ρ0) = E

(
1
n

n

∑
i=2

η̃h
2,i,n

)
= 0 (26)

where η̃h
2,i,n = εiξ2,i−1,n and ξ2,i−1,n is defined in (17). The heteroscedasticity robust

version of the moment used by the original KP estimator is given by

mh
2,n(ρ0) = E

(
1
n

n

∑
i=1

ηh
2,i,n

)
= 0, (27)

where ηh
2,i,n = ∑i−1

j=1(mij,n +mji,n)εiε j. For the GMM version of the MLAM estimator the

corresponding moment m̃h
2,n(ρ0) is constructed equivalently, replacing the elements of

Mn by those of M̃n.

The asymptotic distributions of the resulting estimators are easily derived by set-

ting the diagonal elements of A2,n(ρ0) (for the MLAM2 estimator), respectively Mn and

M̃n (for the GMM estimators), equal to zero. For example, the asymptotic variance V2

14



in (18) is replaced by

V2 = σ4
0 lim

n→∞

(
1
n

n

∑
i=2

i−1

∑
j=1

(a2,ij,n + a2,ji,n)
2

)
. (28)

The respective modifications of the limiting distributions presented in Theorems 1 and

2 are obvious and we therefore do not derive the modified limiting distributions.

6 GMM estimators for the spatial lag model

An alternative specification is the spatial lag (Durbin) model given by

y = γWny + Xβ + ε,

where γ and Wn correspond to ρ and Mn in the spatial error model. Accordingly,

Assmptions 3 and 4 apply to γ and Wn. Assuming ε ∼ N (0, σ2 I) yields the log-

likelihood function

`(β, γ, σ2) = const −n
2

ln(σ2) + ln|I − γWn| −
1

2σ2 (y−γWny−Xβ)′(y−γWny−Xβ)′

with the gradients5

∂`(·)
∂β

=
1
σ2 X′(y− γWny− Xβ)

∂`(·)
∂γ

= −tr[Wn(I − γWn)
−1] +

1
σ2 (y− γWny− Xβ)′Wny

The reduced form representation of the model

y = (I − γWn)
−1Xβ + u

5For convenience we assume σ2 to be known. As usual a consistent estimator can be obtained from
the residuals of the model.
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with u = (I − γWn)−1ε yields

∂`(·)
∂γ

= −tr[Wn(I − γWn)
−1] +

1
σ2 (y− γWny− Xβ)′Wn(I − γWn)

−1(Xβ + ε)

= µ(γ) +

[
1
σ2 (y− γWny− Xβ)′Wn(I − γWn)

−1Xβ

]
+

[
1
σ2 (y− γWny− Xβ)′Wn(I − γWn)

−1ε

]
≡ µ(γ) + g1(β, γ) + g2(β, γ),

where we split the gradient into the deterministic term µ(γ) and two stochastic terms

g1(β, γ) = ε′Wn(I − γWn)−1Xβ/σ2 and g2(β, γ) = ε′Wn(I − γWn)−1ε/σ2. Using the

first order approximation (I − γWn)−1 ≈ In gives rise to the following set of moment

conditions for estimating β and γ

g̃0(β, γ) = X′ε = 0 (29)

g̃1(β, γ) = β′X′W ′nε = 0 (30)

g̃2(β, γ) = ε′Wnε = 0. (31)

Note that the first and third moment conditions are also employed for the spatial error

model and only the second moment is added for the spatial lag model. Accordingly,

the treatment of the spatial lag model is straightforward.

The moment condition g̃1(β, γ) can be interpreted as a linear combination of the

k moment conditions g̃v
1(β, γ) = X′W ′nε = 0. While the set of moment conditions

g̃(β, γ) = (g̃0(β, γ)′, g̃v
1(β, γ)′, g̃2(β, γ))′ leads to an over-identified GMM estimator

whenever the number of regressors is larger than one, the linear moment conditions

in g̃v
1(β, γ) are computationally simpler than the nonlinear moment condition g̃1(β, γ).

The optimal weight matrix can be constructed as in section 4. In the following we refer

to the resulting estimator as the MLAM1 estimator for the spatial lag model.
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It is interesting to note that the two-stage instrumental variable estimator of Anselin

(1988) and the GMM estimator of Kelejian & Prucha (1998) are based on a p’th order

approximation of g1(β, γ) resulting in the instrumental variable matrix that is given

by the linearly independent columns of (X, WnX, W2
n X, . . . , Wp

n X) whereas the term

g2(β, γ) is ignored. As pointed out by Lee (2003) this may result in a dramatic loss of

efficiency, in particular if β is close to zero.

7 Monte Carlo comparison

We now compare the properties of alternative MM and GMM estimators for the spa-

tial error model in a Monte Carlo (MC) simulation distinguishing the case of small and

large samples as well as homo- and heteroskedastic disturbances. To this end we em-

ploy two variants of a row standardized “ahead-behind” spatial weight matrix similar

to the one used by Kelejian & Prucha (2007) in which observation i has di = 2ri neigh-

bors, ri “ahead” (i− ri, . . . , i− 1) and ri “behind” (i + 1, . . . , i + ri).6 The corresponding

elements of the matrix are initially set to one and then the matrix is row-normalized.

In the first variant, M1,n, the first and third quarter of observations have di = 8 neigh-

bors each whereas the second and last quarter have di = 2 neighbors each. Hence, all

nonzero elements of the weight matrix equal 1/8 or 1/2. In the second variant, M2,n,

the first and the third quarter of observations have di = 6 neighbors while the second

and last quarter of observations have di = 4 neighbors, with corresponding nonzero

elements equal to 1/6 or 1/4. Note that the resulting spatial weight matrices are not

symmetric. The characteristics of both matrices for sample sizes n = 100 and n = 1000

are summarized in Table 1:
6 Since we consider a “circular world” obsevation 1 and observation n are direct neighbors. Hence,

for observation i = n, the jth “behind”-neighbor i + j is observation j.

17



Table 1: Characteristics of spatial weight ma-
trices.

No. of neighbors percent nonzero
avg. max min n = 100 1000

M1,n 5.0 8 2 5.0 0.5
M2,n 5.0 6 4 5.0 0.5

For the spatial autoregressive parameter ρ0 we consider the values −0.8, −0.4, 0,

0.4 and 0.8. In our baseline specification the error vector is generated as ε ∼ N (0, σ2
0 In)

with σ2
0 = 1. As noted by Kelejian & Prucha (1999) the choice of the error variance

σ2
0 does not affect the performance of the estimators. Results are presented for small

samples with n = 100 and large samples with n = 1000.

In addition to the baseline specification we also consider a heteroskedastic setup

similar to Kelejian & Prucha (2010). Specifically εi = σ0,iξi, where ξi is generated by

independent draws from a standard normal distribution and σ2
0,i = di/5, where, as

defined above, the factor di denotes the number of neighbors of individual i. The

scaling is such that the average error variance is approximately 1.

The following estimators are included in our MC study: KP-NLS refers to the inef-

ficient and not heteroskedasticity robust original KP estimator computed by running a

nonlinear least-squares estimator based on the three moment conditions in (5). In the

heteroskedastic-error setup we compare this estimator to the heteroskedasticity robust

but inefficient GMM version of the original KP estimator using the weighting matrix

WKP,n (see section 2), labeled KP-GMM. MLAM1 and MLAM2 indicate the moment

estimators based on a first and second order approximation of the likelihood function

(see Section 3). These estimators involve no weighting matrix as they are based on

a single moment condition. For both estimators we use the heteroskedasticity robust

variants (described in Section 5) in the setup with heteroskedastic errors. KP-eff and
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MLAM-eff refer to the efficient GMM estimators based on the two-dimensional KP and

MLAM moment vectors and the optimal weighting matrix proposed in section 4.

Besides comparing the estimation performance in terms of the bias and root mean

squared error (RMSE) of the estimators, actual sizes of the t-statistics are reported in

order to assess whether the asymptotic properties regarding the variance-covariance

structure of the estimators remain valid in small samples.7 The MC results allow us

to assess how our simple MM estimators perform compared to the original estimator

by Kelejian & Prucha (1999) and its efficient and heteroskedasticity robust counterpart.

For our analysis we focus on the disturbance vector of the SARAR(0,1) model given in

equation (2). All MC results are based on 1000 replications as in comparable simulation

studies, e.g. Lin & Lee (2010) and Liu et al. (2010).

Table 2 summarizes the MC results for both spatial weight matrices and sample

size n = 100 under homoskedasticity. There is no clear tendency for any estimator

to yield the smallest bias if the sample size is that small. This holds true for both

types of the spatial weight matrix, M1,n and M2,n. However, the MLAM2 estimator

tends to yield the largest bias in cases where ρ0 is large in absolute value. The efficient

GMM estimators (KP-eff and MLAM-eff) do not yield smaller RMSE than the other

estimators if the variation in the number of neighbors per observation is large (M1,n).

In the case of a more moderate variation in the number of neighbors per observation

(M2,n) the efficient GMM estimator with KP moments improves slightly in terms of

RMSE relative to the original KP estimator (KP-NLS). Overall, the MLAM2 estimator

yields the smallest RMSE for samples of size 100. Furthermore, the results in Table 2

show that the KP-NLS estimator fits the desired rejection rate of 5% best in the case

of small samples with large variation in the number of neighbors (M1,n) whereas the

efficient GMM estimators tend to reject too often. If the number of neighbors varies
7 This is done by running a t-test for each estimate ρ̂ of whether it equals the true parameter ρ0.

In doing so we use the corresponding standard error estimate of ρ which is based on its asymptotic
distribution. We indicate a rejection if the (true) null hypothesis of equality is rejected at the 5% level.
Hence, for each estimator we expect a (wrong) rejection to occur in 5% of the MC replications.
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less (M2,n) the actual size of the MLAM1 approach is close to the nominal size of 5%.

[TABLE 2 ABOUT HERE ]

Increasing the sample size to 1000 but maintaining homoskedastic errors changes

the relative performance of the estimators only little, see Table 3. Still there is no clear

tendency which estimator yields the smallest bias if the number of neighbors per ob-

servation varies a lot (M1,n). For the spatial weight matrix with moderate variation

(M2,n) the efficient GMM estimators yield the smallest bias whereas the KP-NLS es-

timator possesses the largest bias. In specification M1,n the efficient GMM estimator

with KP moments yields a smaller RMSE than the KP-NLS estimator while the effi-

cient GMM variant of the MLAM estimator does not improve relative to the simpler

variants. This changes in specification M2 where both variants of the efficient GMM

yield a smaller or equal RMSE than the other estimators. Generally the differences are

not very large, however. Overall the estimators fit the desired rejection rate of 5% ad-

equately, an exception being the efficient GMM estimators in the case of specification

M1,n with ρ0 = −0.8.

[TABLE 3 ABOUT HERE ]

Incorporating heteroskedasticity that depends on the spatial dependence structure,

which is arguably more realistic than the case of homoskedastic errors, leads to more

pronounced results. Table 4 contains the results for small samples (n = 100). Not

surprisingly the original KP estimator, which relies on homoskedasticity, yields much

larger biases than the heteroskedasticity robust estimators for almost all values of ρ.

Among the latter there is, however, again no clear ranking in terms of size distortions.

The efficient GMM estimators with KP moments yield smaller RMSE than the ineffi-

cient counterpart (KP-GMM) in more cases than under homoskedasticity and for both

spatial weight matrices. Still, however the MLAM2 or even the MLAM1 estimator
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yield the smallest RMSE in most cases. The actual sizes are least reliable for the effi-

cient GMM estimators and the KP-NLS estimator.

[TABLE 4 ABOUT HERE ]

The MC results presented above do not reveal a notable advantage of the efficient

GMM estimators. This picture changes in the case of heteroskedastic errors and a sam-

ple size of 1000. These results are summarized in Table 5. The efficient GMM estimators

yield the smallest bias across all specifications. As expected, the bias is almost indis-

tinguishable between these two estimators. Not surprisingly the non-robust KP-NLS

estimator yields the largest bias. Also in terms of the RMSE the efficient GMM estima-

tors perform best. However, for some values of ρ the RMSE of the simple MLAM es-

timators is only marginally larger. While again the KP-NLS estimator generally yields

the largest RMSE, the inefficient GMM variant yields similar results as the MLAM esti-

mators for positive values of ρ. The fit of the rejection rate is best for the efficient GMM

estimators in most specifications. In some cases the MLAM1 estimator performs even

better. Generally the fit is adequate for all estimators but the KP-NLS estimator.

[TABLE 5 ABOUT HERE ]

The results of these MC simulations show that both, the efficient GMM variant with

KP moments and the one with MLAM moments tend to outperform the other estima-

tors in terms of bias and RMSE if the sample size is sufficiently large. The advantage

is more pronounced in the case of heteroskedastic errors. Comparing both efficient

GMM estimators with each other the performance is indistinguishable, as expected.8

The simple MLAM estimators, based on a single moment condition, perform very

well in general. For smaller samples they even outperform the (overidentified) efficient

GMM estimators. This observation is remarkable and makes these simple moment

8 Recall that these estimators differ only in the second element of the moment vector given in 27. In
the case of a symmetric spatial weight matrix they are equal, since then Mn ≡ M′n Mn = Mn Mn ≡ M̃n.
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estimators, not involving the estimation of a weighting matrix, a reasonable alternative

to conventional GMM estimators. This holds in particular for the MLAM1 estimator,

which has an analytical solution. Overall, the results also reassure the validity of the

applied approximations empirically.

We close our MC simulation study by comparing the MLAM1 estimator for the

spatial lag model to the ML estimator and the GS2SLS estimator of Kelejian & Prucha

(1998) which is based on the instrumental variable matrix [X, WX, W2X]. The regressor

is generated as xi
i.i.d.∼ N (0, 1) and the spatial dependence is generated by the weight

matrix Wn = M2,n. The sample size is n = 100 and various combinations of the pa-

rameters β and γ are considered. From the results presented in Table 6 it turns out that

the MLAM1 estimator perfoms much better than the GS2SLS estimator, in particular if

β is small. The reason is that for small β the instruments WkX are weak leading to a

severe bias and large standard errors. Unfortunately, in empirical applications the R2

is typically small, which is the scenario where the GS2SLS estimator performs poorly.

As expected, the ML estimator performs best but the MLAM1 estimator is also unbi-

ased and nearly as efficient as the ML estimator. Note that the MLAM1 estimator is

robust against heteroskedastic and non-Gausian errors which is not the case for the

ML estimator.

[TABLE 6 ABOUT HERE ]

8 Conclusion

In this paper we reconsider (approximately) optimal moment conditions for the es-

timation of the spatial parameter in regression models with spatial error correlation.

These are directly derived from the first order condition for the maximization of the

log-likelihood function. The resulting moment conditions yield computationally sim-

ple and robust estimators. Illustrating the similarity of our moment conditions to those
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used by Kelejian & Prucha (1999) we provide an intuitive interpretation for their pop-

ular method of moments estimator. In addition we derive simplified efficient GMM

estimators based on a modification of the moment conditions. Following Kelejian &

Prucha (2010) and Lin & Lee (2010) we also propose heteroskedasticity robust versions

of all our estimators. Finally, we extend the idea underlying our estimators to the

GMM estimation of the spatial lag (Durbin) model.

Our MC results suggest that the efficient GMM estimators are (slightly) more ef-

ficient if the errors are heteroskedastic and the sample is large. As expected, the KP

moments and the MLAM2 moments perform equally well, confirming our interpre-

tation of the estimator by Kelejian & Prucha (1999) as an approximation of the score

of the log-likelihood function. Most importantly the simplest MLAM1 estimator per-

forms similar to the more demanding GMM or ML variants suggesting that this esti-

mator is particularly attractive in empirical practice. Our MLAM1 estimator for the

spatial lag model performs well in comparison to both the GS2SLS estimator proposed

by Kelejian & Prucha (1998) and also the (efficient) ML estimator.
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Tables

Table 2: Bias, (RMSE) and {sizes} for homoskedastic errors, n = 100

ρ KP-NLS MLAM1 MLAM2 KP-eff MLAM-eff
spatial weight matrix: M1,n (8 or 2 neighbors)

−0.80 0.0064 0.0048 0.0121 0.0104 0.0104
(0.0747) (0.0796) (0.0696) (0.0743) (0.0742)
{0.0430} {0.0430} {0.0420} {0.0810} {0.0800}

−0.40 0.0022 0.0038 0.0110 0.0100 0.0099
(0.1214) (0.1229) (0.1163) (0.1221) (0.1219)
{0.0500} {0.0500} {0.0510} {0.0740} {0.0730}

0.00 -0.0046 -0.0005 -0.0002 0.0031 0.0030
(0.1293) (0.1298) (0.1256) (0.1307) (0.1306)
{0.0510} {0.0510} {0.0540} {0.0710} {0.0690}

0.40 -0.0086 -0.0041 -0.0087 -0.0036 -0.0037
(0.1081) (0.1102) (0.1066) (0.1100) (0.1100)
{0.0500} {0.0510} {0.0530} {0.0710} {0.0720}

0.80 -0.0064 -0.0039 -0.0073 -0.0054 -0.0054
(0.0566) (0.0608) (0.0555) (0.0580) (0.0579)
{0.0500} {0.0430} {0.0570} {0.0760} {0.0770}

spatial weight matrix: M2,n (6 or 4 neighbors)
−0.80 0.0035 0.0064 0.0123 0.0119 0.0118

(0.1549) (0.1495) (0.1472) (0.1519) (0.1515)
{0.0250} {0.0240} {0.0190} {0.0330} {0.0330}

−0.40 -0.0174 -0.0130 -0.0057 -0.0045 -0.0044
(0.1830) (0.1770) (0.1684) (0.1746) (0.1741)
{0.0590} {0.0580} {0.0540} {0.0810} {0.0810}

0.00 -0.0194 -0.0154 -0.0145 -0.0114 -0.0113
(0.1641) (0.1611) (0.1580) (0.1614) (0.1612)
{0.0550} {0.0570} {0.0600} {0.0740} {0.0720}

0.40 -0.0176 -0.0147 -0.0172 -0.0146 -0.0145
(0.1252) (0.1256) (0.1242) (0.1255) (0.1255)
{0.0520} {0.0550} {0.0530} {0.0690} {0.0690}

0.80 -0.0100 -0.0087 -0.0105 -0.0102 -0.0101
(0.0621) (0.0650) (0.0617) (0.0618) (0.0617)
{0.0490} {0.0520} {0.0490} {0.0670} {0.0650}

Notes: The number of MC replications is 1000. The errors are generated as u = ρMu + ε, ε ∼
N (0, I). Entries report bias (without brackets), RMSE in round brackets, empirical sizes of t-
tests in curly brackets (nominal size = 0.050). For details on the spatial weight matrices see
Table 1.
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Table 3: Bias, (RMSE) and {sizes} for homoskedastic errors, n = 1000

ρ KP-NLS MLAM1 MLAM2 KP-eff MLAM-eff
spatial weight matrix: M1,n (8 or 2 neighbors)

−0.8 0.0003 0.0000 0.0008 0.0006 0.0006
(0.0197) (0.0217) (0.0182) (0.0193) (0.0193)
{0.0480} {0.0440} {0.0510} {0.0690} {0.0670}

−0.4 -0.0004 -0.0003 0.0005 0.0004 0.0004
(0.0359) (0.0362) (0.0350) (0.0357) (0.0357)
{0.0500} {0.0450} {0.0480} {0.0540} {0.0530}

0.0 -0.0012 -0.0008 -0.0008 -0.0004 -0.0004
(0.0391) (0.0390) (0.0388) (0.0392) (0.0392)
{0.0450} {0.0450} {0.0450} {0.0480} {0.0480}

0.4 -0.0014 -0.0010 -0.0015 -0.0009 -0.0009
(0.0321) (0.0330) (0.0320) (0.0324) (0.0324)
{0.0440} {0.0460} {0.0410} {0.0440} {0.0430}

0.8 -0.0009 -0.0007 -0.0010 -0.0008 -0.0008
(0.0160) (0.0175) (0.0156) (0.0159) (0.0159)
{0.0420} {0.0460} {0.0400} {0.0440} {0.0450}

spatial weight matrix: M2,n (6 or 4 neighbors)
−0.8 -0.0015 -0.0012 -0.0003 0.0002 0.0002

(0.0548) (0.0526) (0.0509) (0.0503) (0.0503)
{0.0450} {0.0470} {0.0500} {0.0550} {0.0550}

−0.4 -0.0019 -0.0016 -0.0011 -0.0005 -0.0005
(0.0549) (0.0533) (0.0528) (0.0528) (0.0527)
{0.0450} {0.0470} {0.0520} {0.0570} {0.0570}

0.0 -0.0020 -0.0017 -0.0017 -0.0012 -0.0012
(0.0487) (0.0481) (0.0481) (0.0481) (0.0481)
{0.0430} {0.0470} {0.0470} {0.0500} {0.0510}

0.4 -0.0018 -0.0016 -0.0018 -0.0015 -0.0015
(0.0364) (0.0369) (0.0364) (0.0364) (0.0364)
{0.0410} {0.0470} {0.0430} {0.0450} {0.0450}

0.8 -0.0010 -0.0009 -0.0010 -0.0010 -0.0010
(0.0173) (0.0184) (0.0172) (0.0170) (0.0170)
{0.0410} {0.0470} {0.0420} {0.0430} {0.0440}

Notes: See Table 2.
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Table 4: Bias, (RMSE) and {sizes} for heteroskedastic errors, n = 100

ρ KP-NLS KP-GMM MLAM1 MLAM2 KP-eff MLAM-eff
het. robust No Yes Yes Yes

spatial weight matrix: M1,n (8 or 2 neighbors)
−0.8 0.0029 -0.0061 -0.0048 0.0046 0.0102 0.0104

(0.1182) (0.1093) (0.1082) (0.0840) (0.0858) (0.0849)
{0.0210} {0.0480} {0.0410} {0.0360} {0.0510} {0.0460}

−0.4 -0.0624 -0.0119 -0.0101 0.0014 0.0123 0.0134
(0.1921) (0.1618) (0.1553) (0.1370) (0.1377) (0.1368)
{0.0230} {0.0500} {0.0510} {0.0580} {0.0640} {0.0620}

0.0 -0.0852 -0.0149 -0.0126 -0.0087 0.0052 0.0068
(0.1911) (0.1591) (0.1532) (0.1490) (0.1470) (0.1463)
{0.0270} {0.0490} {0.0560} {0.0650} {0.0700} {0.0710}

0.4 -0.0823 -0.0153 -0.0129 -0.0156 -0.0034 -0.0020
(0.1586) (0.1278) (0.1247) (0.1271) (0.1255) (0.1249)
{0.0420} {0.0450} {0.0570} {0.0570} {0.0750} {0.0740}

0.8 -0.0499 -0.0096 -0.0080 -0.0113 -0.0070 -0.0066
(0.0868) (0.0667) (0.0673) (0.0675) (0.0685) (0.0686)
{0.0690} {0.0440} {0.0590} {0.0510} {0.0730} {0.0750}

spatial weight matrix: M2,n (6 or 4 neighbors)
−0.8 -0.0029 0.0027 0.0050 0.0097 0.0119 0.0116

(0.1566) (0.1577) (0.1520) (0.1490) (0.1537) (0.1531)
{0.0250} {0.0310} {0.0330} {0.0270} {0.0310} {0.0290}

−0.4 -0.0269 -0.0193 -0.0154 -0.0084 -0.0048 -0.0048
(0.1878) (0.1862) (0.1798) (0.1710) (0.1767) (0.1760)
{0.0510} {0.0630} {0.0650} {0.0660} {0.0780} {0.0730}

0.0 -0.0281 -0.0208 -0.0173 -0.0162 -0.0116 -0.0115
(0.1676) (0.1658) (0.1624) (0.1595) (0.1627) (0.1623)
{0.0520} {0.0660} {0.0650} {0.0660} {0.0770} {0.0770}

0.4 -0.0245 -0.0185 -0.0160 -0.0181 -0.0149 -0.0148
(0.1276) (0.1259) (0.1260) (0.1250) (0.1262) (0.1261)
{0.0510} {0.0650} {0.0640} {0.0660} {0.0740} {0.0730}

0.8 -0.0137 -0.0104 -0.0093 -0.0109 -0.0105 -0.0104
(0.0634) (0.0624) (0.0649) (0.0621) (0.0621) (0.0621)
{0.0470} {0.0630} {0.0590} {0.0600} {0.0670} {0.0670}

Notes: The errors are generated as u = ρMu + ε, εi = σiξi, ξi ∼ i.i.d.N (0, 1), σ2
i = di/5. See

Table 2 for more details.
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Table 5: Bias, (RMSE) and {sizes} for heteroskedastic errors, n = 1000

ρ KP-NLS KP-GMM MLAM1 MLAM2 KP-eff MLAM-eff
het. robust No Yes Yes Yes

spatial weight matrix: M1,n (8 or 2 neighbors)
−0.8 0.0221 -0.0019 -0.0018 -0.0005 0.0003 0.0002

(0.0424) (0.0342) (0.0348) (0.0250) (0.0242) (0.0241)
{0.0640} {0.0480} {0.0400} {0.0520} {0.0500} {0.0490}

−0.4 -0.0455 -0.0025 -0.0024 -0.0012 0.0003 0.0003
(0.0727) (0.0514) (0.0493) (0.0445) (0.0430) (0.0429)
{0.0650} {0.0410} {0.0410} {0.0430} {0.0570} {0.0560}

0.0 -0.0734 -0.0028 -0.0026 -0.0023 -0.0004 -0.0004
(0.0914) (0.0509) (0.0488) (0.0487) (0.0468) (0.0467)
{0.1880} {0.0360} {0.0400} {0.0400} {0.0490} {0.0490}

0.4 -0.0713 -0.0025 -0.0024 -0.0026 -0.0011 -0.0011
(0.0830) (0.0400) (0.0390) (0.0402) (0.0390) (0.0390)
{0.3490} {0.0320} {0.0380} {0.0400} {0.0440} {0.0460}

0.8 -0.0417 -0.0014 -0.0013 -0.0016 -0.0012 -0.0011
(0.0468) (0.0197) (0.0199) (0.0198) (0.0197) (0.0197)
{0.5210} {0.0290} {0.0400} {0.0400} {0.0380} {0.0370}

spatial weight matrix: M2,n (6 or 4 neighbors)
−0.8 -0.0081 -0.0018 -0.0015 -0.0008 -0.0001 -0.0001

(0.0575) (0.0568) (0.0544) (0.0522) (0.0516) (0.0515)
{0.0440} {0.0420} {0.0480} {0.0540} {0.0570} {0.0570}

−0.4 -0.0095 -0.0021 -0.0019 -0.0014 -0.0008 -0.0008
(0.0573) (0.0564) (0.0546) (0.0538) (0.0537) (0.0537)
{0.0450} {0.0430} {0.0480} {0.0580} {0.0560} {0.0560}

0.0 -0.0096 -0.0022 -0.0020 -0.0020 -0.0014 -0.0014
(0.0508) (0.0497) (0.0490) (0.0490) (0.0489) (0.0489)
{0.0460} {0.0430} {0.0480} {0.0490} {0.0500} {0.0500}

0.4 -0.0081 -0.0019 -0.0018 -0.0019 -0.0016 -0.0016
(0.0381) (0.0371) (0.0374) (0.0371) (0.0370) (0.0370)
{0.0470} {0.0440} {0.0470} {0.0460} {0.0410} {0.0410}

0.8 -0.0044 -0.0011 -0.0010 -0.0011 -0.0011 -0.0011
(0.0183) (0.0176) (0.0186) (0.0175) (0.0174) (0.0174)
{0.0470} {0.0430} {0.0460} {0.0410} {0.0410} {0.0410}

Notes: See Table 4.

29



Table 6: Bias and (RMSE) for the spatial lag model, n = 100

ρ̂ β̂
ρ ML MLAM1 GS2SLS ML MLAM1 GS2SLS

β = 1
−0.8 0.0105 –0.0100 –0.0175 0.0105 –0.0100 –0.0175

(0.1250) (0.1527) (0.2984) (0.1033) (0.1039) (0.1171)
−0.4 0.0042 0.0003 –0.0389 –0.0043 –0.0051 –0.0164

(0.1374) (0.1536) (0.2966) (0.0994) (0.0992) (0.1090)
0.0 –0.0118 –0.0111 –0.0249 –0.0001 –0.0008 –0.0077

(0.1326) (0.1402) (0.2755) (0.1005) (0.1004) (0.1063)
0.4 -0.0200 –0.0107 –0.0372 –0.0118 –0.0111 –0.0249

(0.1016) (0.1056) (0.2430) (0.1028) (0.1031) (0.1078)
0.8 -0.0108 –0.0044 –0.0201 0.0047 0.0015 –0.0028

(0.1059) (0.1066) (0.1091) (0.0523) (0.0565) (0.1313)
β = 0.5

−0.8 0.0159 –0.0075 –0.0774 0.0020 0.0003 –0.0270
(0.1442) (0.1718) (0.9158) (0.1022) (0.1019) (0.1317)

−0.4 –0.0015 –0.0083 –0.1404 –0.0010 –0.0016 –0.0249
(0.1593) (0.1750) (1.0009) (0.1028) (0.1030) (0.1500)

0.0 –0.0144 –0.0080 –0.1819 –0.0020 –0.0021 –0.0272
(0.1413) (0.1455) (0.9676) (0.0970) (0.0971) (0.1419)

0.4 –0.0175 –0.0045 –0.1646 –0.0056 –0.0062 –0.0241
(0.1160) (0.1182) (0.9583) (0.0997) (0.0997) (0.1368)

0.8 –0.0158 –0.0051 –0.0589 0.0014 –0.0011 –0.0078
(0.0565) (0.0613) (0.8154) (0.0999) (0.1000) (0.1249)

β = 0.1
−0.8 0.0164 –0.0114 0.5711 –0.0021 –0.0024 –0.0378

(0.1517) (0.1812) (4.3060) (0.0990) (0.0990) (0.2910)
−0.4 –0.0020 –0.0086 0.7920 0.0014 0.0015 –0.0185

(0.1665) (0.1773) (4.1379) (0.1012) (0.1014) (0.2764)
0.0 0.0006 0.0006 –0.0130 –0.0134 –0.0072 0.4847

(0.1613) (0.1666) (3.6199) (0.1020) (0.1021) (0.2428)
0.4 0.0034 0.0033 –0.0069 –0.0211 –0.0082 0.2432

(0.1230) (0.1347) (4.6602) (0.0986) (0.0988) (0.2474)
0.8 –0.0125 0.0040 0.2275 0.0026 0.0020 0.0007

(0.0585) (0.0910) (1.3377) (0.1005) (0.0990) (0.1320)

Notes: The data are generated by the model y = γWny + Xβ + ε, where ε ∼ N (0, I). En-
tries report bias (without brackets) and RMSE (round brackets). ML indicates the maximum
likelihood estimator as implemented in the Matlab Econometrics Toolbox developed by James
LeSage. The MLAM1 estimator is based on the moment equations (29)–(31). GS2SLS is the
GMM estimator based on the matrix of instruments Z = [X, WX, W2X].
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Appendix

Proof of Theorem 1

The moments of the MLAM estimator can be represented as

mk(ρ) = E

[
1
n

u′(I − ρMn)Ak,n(ρ)(I − ρM′n)u
]

= E

[
1
n

u′ Ãk,n(ρ)u
]

,

where

Ã1(ρ) = Mn − ρ(M′n Mn + M2
n) + ρ2M′n M2

n

Ã2(ρ) = Mn + ρ(M̃n −M2
n −M′n Mn) + ρ2(M′n M2

n − M̃n Mn −M′n M̃n) + ρ3M′n M̃n Mn.

A first order Taylor expansion around ρ0 yields

0 = mk,n(ρ̂) = mk,n(ρ0) + ψk,n(ρ̂− ρ0) + op(n−1/2),

where

ψk,n =
1
n

u′Dk,n(ρ0)u

and Dk,n(ρ0) =
∂Ãk,n(ρ)

∂ρ

∣∣∣∣∣
ρ=ρ0

.

It follows that

E[n(ρ̂− ρ0)
2] = E

[
nmk,n(ρ0)

2

ψ2
k,n

]
−→

n→∞

Vk

ψ2
k

,

where Vk is defined in (18) and ψk = lim
n→∞

E(ψk,n). The derivatives Dk,n(ρ0) can easily
be found by differentiating (14) and (15) yielding the results for ψk,n as presented in the
theorem.
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Proof of Theorem 2

Following Newey & McFadden (1994) the asymptotic distribution of the nonlinear
GMM estimator is given by

√
n(ρ̂opt − ρ0)

d→ N (0,Vρ),

where

Vρ =
[
D(ρ0)

′W(ρ0)D(ρ0)
]−1

,

D(ρ0) = lim
n→∞

E

(
∂mn(ρ)

∂ρ

)∣∣∣∣
ρ=ρ0

and W(ρ0) = lim
n→∞

Wn(ρ0).

Using the representation of the moment conditions as in 6 and 7 it follows that

∂mn(ρ)

∂ρ

∣∣∣∣
ρ=ρ0

=
∂

∂ρ

[
m1,n(ρ)
m2,n(ρ)

]∣∣∣∣
ρ=ρ0

=
1
n

∂

∂ρ

[
u′Bn(ρ)′MnBn(ρ)u
u′Bn(ρ)′MnBn(ρ)u

]∣∣∣∣
ρ=ρ0

=
1
n

∂

∂ρ

[
(u− ρMnu)′Mn(u− ρMnu)
(u− ρMnu)′Mn(u− ρMnu)

]∣∣∣∣
ρ=ρ0

=
1
n

[
u′(2ρ̂M′nM2

n −M′nMn −M2
n)u

u′(2ρ̂M′nMnMn −M′nMn −MnMn)u

]
.

The asymptotic variance follows straightforwardly.
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