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Abstract

This paper analyzes the welfare maximizing information structure (and mechanism) in a bilat-

eral trade setting. The welfare loss in the optimal information structure constitutes the minimal

welfare loss due to asymmetric information. With binary underlying types it is shown that more

than 95% of first best welfare can be achieved while the optimal mechanism without information

design may achieve less than 90% of first best welfare. For more general type distributions, the

optimal information structure is a monotone partition of the type space and the optimal mecha-

nism is deterministic. A closed form solution is derived for the binary type case.

JEL code: D82
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1. Introduction

Information asymmetries can lead to inefficiencies in economic transactions, see, for example, Akerlof

(1970); Mirrlees (1971); Baron and Myerson (1982). Myerson and Satterthwaite (1983) established this

result in what is arguably the most basic economic setting: bilateral trade. In their model, a buyer

holds private information about his valuation and a seller about his costs. Myerson and Satterthwaite

establish an inefficiency result but also derive the welfare maximizing mechanism in their setting.

This paper extends their analysis by considering not only the welfare maximizing mechanism but also

the welfare maximizing information structure. More precisely, imagine that buyer and seller do not

know their own valuation and costs perfectly but only have a private noisy signal, i.e. an estimate, of

these variables. This paper derives the information structure, i.e. a mapping from true valuation and

costs to signals, that maximizes expected welfare. Welfare under this optimal information structure

is consequently the maximal welfare that is attainable (by any information structure and mechanism)

under the assumption that players will eventually hold the information they receive privately. Hence,

the difference in welfare attained by the solution of this paper and first best constitutes the loss of

welfare that can be attributed to information asymmetries. Any additional welfare loss has to be

blamed on suboptimal institutions, i.e. either a suboptimal mechanism or a suboptimal information

structure.

The goal of the paper is therefore to derive the optimal information structure in order to establish

the welfare loss due to information asymmetry in a bilateral trade setting. Of course, properties of the

welfare maximizing information structure (and mechanism) are also of independent interest.

There are also literal interpretations of information design. For example, conventions and insti-

tutions like the legal framework for contracting affect the information of players. Many goods are
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indeed transacted at a time at which value and costs are not entirely clear. Tickets for flights are,

for instance, bought and sold long before the actual travel implying that the true (fuel) costs of the

flight are not perfectly known at the time of contracting. Similarly, tickets for music festivals are sold

at a time at which the final line-up is still subject to changes which implies that neither costs nor

valuation are perfectly known at the time of contracting. In other examples, buyers know only a set

of key characteristics of the product but do not know all features when buying and more generally a

seller’s opportunity costs which depend on potential future buyers’ valuations are uncertain. In this

sense, the welfare optimal information structure gives an indication about the optimal point of time

for contracting or the ideal set of known attributes.

Limiting the information of a player has several effects. Consider, for example, a buyer whose

valuation is either high or low and suppose the information structure is such that he does not get

any information about which of the two valuations has realized. This makes it impossible to establish

whether his valuation is above or below the costs of the seller and therefore less information directly

harms efficiency. On the other hand, giving a player less information also reduces his information rent.

The latter effect relaxes the budget balance constraint and will therefore increase welfare. The following

example in section 1.1 illustrates how information design can improve on the optimal mechanism as

derived in Myerson and Satterthwaite (1983). Section 1.2 summarizes the related literature and section

2 introduces the model formally. Section 3 derives the optimal mechanism for a given finite information

structure. The main results of the paper are derived in section 4 on optimal information structures. The

most prominent examples, binary signal/type distribution and uniform type distribution are discussed

in sections 5 and 6. Section 7 concludes.

1.1. A simple example

In the following example, the seller has costs of either cl = 1 or ch = 6 and both values are equally

likely. The buyer has valuation vl = 2 or vh = 8 also with equal probabilities. If these valuations were

private information of the respective player, first best – i.e. trade if and only if valuation is above cost

– is infeasible. To see this, recall that in the welfare maximal mechanism the participation constraint

of the worst type of each player holds with equality. Therefore the trading prices between type vh

and ch is t(vh, ch) = 6 and t(vl, cl) = 2. To maintain incentive compatibility for type vh, the following

inequality has to hold: 8 − 6/2 − t(vh, cl)/2 ≥ (8 − 2)/2 ⇔ t(vh, cl) ≤ 4. The incentive compatibility

constraint for type cl is 2/2 + t(vh, cl)/2 − 1 ≥ (6 − 1)/2 ⇔ t(vh, cl) ≥ 5. As the two incentive

compatibility constraints cannot be satisfied at the same time, the first best efficient mechanism is not

feasible.

The trading probabilities of the second best mechanism are summarized in table 1. The transfers

in the second best mechanism are t(vh, ch) = 5, t(vl, cl) = 2 and t(vh, cl) = 26/5.1

type cl ch
vl 4/5 0
vh 1 1

Table 1: Optimal trading probabilities when true types are private information

Now consider the following information structure: The buyer learns his valuation perfectly but the

seller receives a binary signal which is either h (high) or l (low) according to the following distribution:

1While a detailed derivation of the optimal mechanism is given at a later point one can almost guess the optimal
mechanism in this example: The transfers t(vh, ch) = 5 and t(vl, cl) = 2 keep the participation constraints of the worst
types with equality. As the trade between vl and cl yields the lowest welfare, it is clear that this is the one where
the trading probability will be less than 1. The incentive compatibility constraint of vh reads 8 − 6/2 − t(vh, cl)/2 ≥
y(vl, cl)(8 − 2)/2 and the one of cl is (t(vh, cl) − 1)/2 + y(vl, cl)(2 − 1)/2 ≥ (6 − 1)/2 where y(vl, cl) is the probability
of trade between type vl and cl. The optimal values of t(vh, cl) and y(vl, cl) are such that both constraints hold with
equality.
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if costs are ch, the seller always receives signal h; if costs are low the signal is h with probability β and

l with probability 1− β. The expected costs when receiving the low signal are therefore 1 while they

are c̃h = 6+β
1+β when receiving the high signal. With these expected costs we want to trade if and only

if the valuation is above expected costs using the transfers t(vh, c̃h) = 6+β
1+β and t(vl, cl) = 2. Note that

the participation constraints hold in this case. Incentive compatibility holds for a buyer of type vh if

8− 1 + β

2

6 + β

1 + β
− 1− β

2
t(vh, cl) ≥

1

2
(1− β)(8− 2)

and for a seller of type cl if

1

2
(t(vh, cl)− 1) +

1

2
(2− 1) ≥ 1

2

(
6 + β

1 + β
− 1

)
.

The lowest value of β compatible with these two conditions is β = −7/5 +
√

54/5 ≈ 0.06969 together

with t(vh, cl) = (6 + β)/(1 + β) − 1 ≈ 4.67423 (both constraints hold with equality for these values)

which leads to c̃h ≈ 5.67423.

The trading probabilities in terms of the true types and signals are given in table 2. A seller with

cost cl trades with a buyer of type vl only if he receives signal l and therefore only with probability

1 − β. All other values should be self explanatory. Two things are noteworthy: First, information

design strictly increases welfare by increasing the probability of trade between vl and cl. Second,

we use the first best trading rule (trade if and only if expected value is above expected costs where

expectations are taken conditional on the signal) with the information structure derived above.

type cl ch
vl ≈ 0.93031 0
vh 1 1

signal l h
vl 1 0
vh 1 1

Table 2: Optimal trading probabilities for true types (left) and signals (right) when the seller has only
a noisy signal of his type

To understand the mechanics behind the example, compare the effect of a direct reduction of the

trading probability with privately known types and the reduction in trading probability through the

introduction of the noisy signal on the binding incentive compatibility constraints of vh and cl. First

consider vh. Reducing the probability of trade between vl and cl makes a misrepresentation as type

vl less profitable. This effect is true for both methods. The noisy signal, however, also leads to a

reduction of t(vh, ch) from ch to c̃h which makes truthtelling more attractive for type vh. Hence, a

smaller reduction of the trading probability is needed with noisy signals than with perfectly known

types to satisfy vh’s incentive compatibility constraint.

Second, consider the incentive compatibility constraint of cl. Reducing the trading probability of

vl and cl by β reduces his expected utility from truthtelling by (vl − cl)β/2 (no matter whether this

reduction is due to noisy signals or not). With perfectly known types this negative effect has to be

made up by the positive effect on vh’s incentive constraint described above. With noisy signals, there

is an additional effect relaxing cl’s incentive constraint: As t(vh, ch) = c̃h < ch, the deviation to ch is

less attractive, i.e. a reduction of the trading probability between vl and cl by β using noisy signals

reduces t(vh, ch) by 5β/(1 + β) and therefore the expected utility of deviating to h by 5β/(1 + β)/2.

That is, increasing β relaxes overall the incentive compatibility constraint of l types with noisy signals

while a higher β makes cl’s incentive compatibility constraint more demanding in the setting with

perfectly known types.

It will be shown that the example here is typical. In particular for a binary distribution of costs

3



and values the optimal information structure will always be fully informative for one player while the

other player’s information structure is binary and one signal reveals his “good type” perfectly. The

optimal mechanism enforces trade with probability 1 unless both players receive the “bad signal” in

which case trade has probability 0. Under the welfare optimal information structure and binary type

distributions trade takes place if and only if the buyer signal exceeds the seller signal.

1.2. Literature

The setting is similar to Myerson and Satterthwaite (1983) who derive the welfare optimal mechanism

in a bilateral trade setting in which (i) trade is voluntary, (ii) the budget has to be balanced and

(iii) the buyer (seller) privately knows his valuation (costs). Keeping (i) and (ii) this paper changes

(iii) by deriving the information structure that maximizes expected welfare. Note that valuations and

costs are independently distributed in Myerson and Satterthwaite (1983). Following the arguments

of Cremer and McLean (1988), correlated types would allow to extract this private information at

no cost and therefore allow for full efficiency. (In fact, telling each player both valuation and cost is

one correlated information structure that eliminates private information altogether, see appendix A.)

Hence, information design could achieve first best welfare if the signal structures of buyer and seller

were correlated. Hence, this paper extends the assumption in Myerson and Satterthwaite (1983) that

types are independent by requiring that also signals of buyer and seller have to be independent.

This paper is related to a recent literature on information design as surveyed in Bergemann and

Morris (2019). Within this literature the following papers consider bilateral trade settings. Roesler and

Szentes (2017) determine the consumer surplus maximizing information structure if a monopolist seller

makes a take-it-or-leave-it offer. The main differences to this paper are (i) the objective (consumer

surplus vs. expected welfare), (ii) the seller has private information in this paper while he does not

in Roesler and Szentes (2017) and (iii) the use of welfare optimal mechanism instead of a take-it-or-

leave-it offer.2 Technically, closest is Bergemann and Pesendorfer (2007) which derives the independent

information structures that maximize revenue in independent private value auctions. As in this paper,

the optimal information structure turns out to be a finite monotone partition. Apart from the objective

(revenue vs. welfare) and the setting (auction vs. bilateral trade), the main difference is the presence of

budget balance as an additional constraint in my setup. More precisely, the mechanism design problem

cannot be written as an unconstrained maximization over virtual valuations but even when formulated

in terms of virtual valuations/costs the problem is still subject to the budget balance constraint. While

some proofs are similar in style to proofs in Bergemann and Pesendorfer (2007), the presence of this

constraint complicates matters significantly. A technical contribution of this paper to the literature on

information design is indeed the addition of this budget balance constraint in a setting with two-sided

asymmetric information. Finally, Lang (2016, ch. 4) shows by means of an example that welfare can

be higher if players have coarse information in a bilateral trade setting. However, he does not analyze

welfare maximizing information structures.

2. Model

A single indivisible object may be traded between a buyer and a seller. The buyer’s valuation for the

object is distributed according to the cumulative distribution function (cdf) HB with support on a

bounded subset of R+. The buyer maximizes a linear utility function, i.e. he maximizes expected valu-

2Condorelli and Szentes (2018) analyze a hold-up problem that can be viewed as a buyer choosing his distribution
of valuations and privately learning his valuation after which a seller who only knows the distribution sets a profit
maximizing price. In contrast to Roesler and Szentes (2017), the buyer is not restricted to choosing an information
structure on a given “true type distribution” but can in fact choose the “true type distribution” itself. This difference to
my paper is in addition to those already stated in the text above for Roesler and Szentes (2017).
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ation minus expected payments. The seller’s (opportunity) costs for making the object are distributed

according to cdf HS (on a bounded subset of R+) and the seller maximizes expected payments minus

expected costs. Welfare equals valuation minus costs if trade takes place and zero otherwise.

To make the problem interesting, I assume that the supports of HB and HS are overlapping and

that for each type there are strictly positve gains from trade with some types of the other player:

Assumption 1 (Overlapping support). min supp(HS) < min supp(HB) < max supp(HS) < max supp(HB)

A signal structure for the buyer maps from the support of HB to a probability distribution over

a set of signals Σv ⊂ R. As the buyer cares only about his expected valuation it is without loss of

generality to identify a signal with the expected valuation it induces. Hence, a signal v is understood

to imply that the buyer has expected valuation v when receiving this signal. With this convention,

a signal structure can be described by a probability distribution over a set of expected valuations. A

signal structure F is then feasible if and only if HB is a mean preserving spread of F . The same applies

to the seller: A feasible signal structure for the seller can be described by a distribution G over costs

such that HS is a mean preserving spread of G. A signal structure is then described by a feasible F

and a feasible G. Note that the two distributions F and G are required to be independent as otherwise

first best could be achieved easily by essentially eliminating the information asymmetry between buyer

and seller, see appendix A.

Without loss of generality only incentive compatible direct revelation mechanisms are considered.

A direct revelation mechanism (“mechanism” in the following) assigns to each pair of signals (v, c) a

probability of trade y(v, c) ∈ [0, 1] and a transfer tB(v, c) ∈ R the buyer pays as well as a transfer

tS(v, c) ∈ R the seller receives. Incentive compatibility means that truthfully revealing his signal must

yield a higher expected utility for a player than announcing another signal given that the other player

announces his signal truthfully, i.e.∫
R
vy(v, c)− tB(v, c) dG(c) ≥

∫
R
vy(v′, c)− tB(v′, c) dG(c) for all v′ ∈ supp(F ) (ICB)∫

R
tS(v, c)− cy(v, c) dF (v) ≥

∫
R
tS(v, c′)− cy(v, c′) dF (v) for all c′ ∈ supp(G). (ICS)

Participation is voluntary at the interim stage: in order to be feasible a mechanisms must not only

be incentive compatible but also yield an expected utility of at least zero conditional on any signal.

Denoting the buyer’s (seller’s) interim utility by U (Π), this can be written as

U(v) =

∫
R
vy(v, c)− tB(v, c) dG(c) ≥ 0 for all v ∈ supp(F ) (PCB)

Π(c) =

∫
R
tS(v, c)− cy(v, c) dF (v) ≥ 0 for all c ∈ supp(G). (PCS)

Ex post budget balance requires tB(v, c) ≥ tS(v, c) but as will be explained later it is without loss of

generality to use the weaker ex ante budget balance constraint instead∫
R

∫
R
tB(v, c)− tS(v, c) dF (v) dG(c) ≥ 0.

Note that due to the convention that signals are the corresponding expected values, expected welfare

equals y(v, c)(v − c) if trade takes place between a buyer with signal v and a seller with signal c. The

objective of this paper is to find the feasible information structure (F and G) and feasible mechanism

(y, tB and tS) that maximize expected welfare given true type distributions HB and HS .

In the following I will refer to an element of the support of HB or HS as type and to an element
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of the support of F or G as signal. I will call the buyer’s (seller’s) signal structure fully informative if

F = HB (G = HS) and noisy otherwise.

3. Welfare optimal mechanism for finite signal distributions

This section presents the optimal mechanism for a given finite information structure. Unsurprisingly,

the derivation is similar to Myerson and Satterthwaite’s analysis for a continuum of signals. However,

the less well known finite type case (and its notation) are relevant for the results in section 4.

Let the buyer have signal vi ∈ {v1, . . . , vn} with probability ωi and the seller have signal cj ∈
{c1, . . . , cm} with probability γj . Lower indices are assumed to denote lower signals. Expected welfare

equals
n∑
i=1

m∑
j=1

y(vi, cj)(vi − cj)ωiγj (1)

where y(vi, cj) is the probability of trade for vi and cj . A buyer of signal vi has expected utility

U(vi) =

m∑
j=1

(viy(vi, cj)− tB(vi, cj))γj = viYB(vi)− TB(vi) (2)

where the expected transfer
∑
j tB(vi, cj)γj is denoted by TB(vi) and the expected probability of trade

is denoted by YB(vi) =
∑
j y(vi, cj)γj . Similarly, the expected utility of the seller is

Π(cj) =

n∑
i=1

(tS(vi, cj)− cjy(vi, cj))ωj = TS(cj)− cjYS(cj). (3)

The goal is to determine the welfare maximizing y and transfer rules tS and tB subject to

• the individual rationality constraints

U(vi) ≥ 0 for all vi ∈ {v1, . . . , vn} Π(cj) ≥ for all cj ∈ {c1, . . . , cm}, (IR)

• the incentive compatibility constraints

viYB(vi)− TB(vi) ≥ viYB(vk)− TB(vk) for all vi, vk ∈ {v1, . . . , vn}, (ICB)

TS(cj)− cjYS(cj) ≥ TS(ck)− cjYS(ck) for all cj , ck ∈ {c1, . . . , cm}, (ICS)

• budget balance
n∑
i=1

ωiTB(vi) =

m∑
j=1

γjTS(cj). (BB)

It is straightforward to show that in this setting every ex ante budget balanced mechanism can be

made ex post budget balanced in the sense that starting from an ex ante budget balanced mechanism

one can manipulate the transfer rules (without changing the decision rule y) in a way that the new

mechanism satisfies ex post budget balance (and IC as well as IR constraints are nor affected). The

proof of this is standard and given in appendix B. For this reason, it is without loss of generality to

use the simpler ex ante budget balance condition instead of its ex post version.

In particular, this means that the objective and all constraints can be expressed in terms of interim

transfers TB and TS or alternatively in terms of interim rents U and Π. The following lemma gives a

simple characterization of incentive compatibility for the discrete case.
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Lemma 1. (ICB) is satisfied if and only if YB is increasing and

U(vi) = U(vi−1) + ỸB(vi−1)(vi − vi−1) for i = 2, . . . , n (4)

where YB(vi−1) ≤ ỸB(vi−1) ≤ YB(vi). (ICS) is satisfied if and only if YS is decreasing and

Π(cj) = Π(cj+1) + ỸS(cj)(cj+1 − cj) (5)

where YS(cj) ≥ ỸS(cj) ≥ YS(cj+1).

(4) and (5) can be rewritten as3

U(vi) = U(v1) +

i−1∑
k=1

ỸB(vk)(vk+1 − vk)

Π(cj) = Π(cm) +

m−1∑
k=j

ỸS(ck)(ck+1 − ck).

This allows to rewrite the budget balance constraint (BB) as

−U(v1)+

n∑
i=1

ωi

[
viYB(vi)−

i−1∑
k=1

ỸB(vk)(vk+1 − vk)

]
≥ Π(cm)+

m∑
j=1

γj

cjYS(cj) +

m−1∑
k=j

ỸS(ck)(ck+1 − ck)


which is equivalent to4

n∑
i=1

[
ωiYB(vi)vi − (vi+1 − vi)ỸB(vi)(1−Wi)

]
≥ U(v1)+Π(cm)+

m∑
j=1

[
γjYS(cj)cj + (cj+1 − cj)ỸS(cj)Γj

]

where Wi =
∑i
k=1 ωk and Γj =

∑j
k=1 γk. In order to relax this constraint, it is best to choose U(v1) =

Π(cm) = 0 and ỸS(cj) = YS(cj+1) (recall that YS is decreasing and that YS(cj) ≥ ỸS(cj) ≥ YS(cj+1))

as well as ỸB(vi) = YB(vi) (recall that YB is increasing and that YB(vi+1) ≥ ỸB(vi) ≥ YB(vi)). Note

that none of these variables is part of the objective (1) and therefore these choices are indeed optimal.

With these choices the budget balance constraint can be written as

n∑
i=1

[ωiYB(vi)vi − (vi+1 − vi)YB(vi)(1−Wi)] ≥
m∑
j=1

[γjYS(cj)cj + (cj+1 − cj)YS(cj+1)Γj ] (6)

which is equivalent to

n∑
i=1

m∑
j=1

y(vi, cj)ωiγj

[
vi − (vi+1 − vi)

1−Wi

ωi
− cj − (cj − cj−1)

Γj−1

γj

]
≥ 0. (7)

Neglecting the monotonicity constraints on YS and YB for now, the mechanism design problem

becomes maximizing (1) subject to (7). Hence, the optimal decision rule y must maximize the La-

grangian

L(y) =

n∑
i=1

m∑
j=1

y(vi, cj)ωiγj

[
(1 + λ)vi − λ(vi+1 − vi)

1−Wi

ωi
− (1 + λ)cj − λ(cj − cj−1)

Γj−1

γj

]
(8)

3Here I use the notational convention that
∑0
k=j · · · = 0 for any j = 1, 2 . . . .

4Define vn+1 = vn, c0 = c1 and cm+1 = cm for notational convenience and similarly Ỹb(vn+1) = ỸS(cm+1) = 0.
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where λ ≥ 0 is the Lagrange parameter of the budget balance constraint. As the Lagrangian is linear

in y, the optimal decision rule is

y∗(vi, cj)


= 1 if vi − (vi+1 − vi) λ

1+λ
1−Wi

ωi
> cj + (cj − cj−1) λ

1+λ
Γj−1

γj

∈ [0, 1] if vi − (vi+1 − vi) λ
1+λ

1−Wi

ωi
= cj + (cj − cj−1) λ

1+λ
Γj−1

γj

= 0 else.

(9)

This leaves us with two questions: First, is it possible that the budget balance constraint is non-

binding? Second, will y∗ satisfy the neglected monotonicity conditions? Since the signal distribution

will be chosen in order to maximize expected welfare, it is unclear whether the usual monotone hazard

rate conditions apply to W and Γ. In the following, it will be shown that it is never optimal to choose

the information structure such that the budget balance constraint is slack (in this case information is

too coarse) or such that the monotonicity constraint is binding (in this case information is too fine).

4. Optimal information structure

For most of this section I take the number of signals as given. That is, it is assumed that the support

of F contains no more than n signals and the support of G contains no more than m signals.5 This

restriction is useful for several reasons. First, it simplifies notation and expostion. Second, two results

will be shown at a later point in the paper that emphasize the relevance of finite information structures.

More precisely, finite information structures turn out to be optimal if the true type distributions HB

and HS have finite support. Even if this not the case, it will be shown that finite information structures

achieve welfare levels arbitrarily close to maximal welfare. In the following, n and m will be assumed

to be at least two. The justification for this is the following lemma which establishes that pooling all

types on one signal is never welfare optimal.

Lemma 2. The support of the signal distribution in the welfare optimal information structure contains

at least two elements for each player.

Given the restriction to no more than n (m) buyer (seller) signals, properties of the optimal in-

formation structure are characterized. I will show four main properties of the optimal information

structure and mechanism: decision monotonicity, binding budget balance constraint, monotone parti-

tion structure and deterministic mechanism.

Decision monotonicity refers to the monotonicity conditions for incentive compatibility given in the

previous section: YS has to be decreasing and YB increasing. Note that λ = 0 in (9) would imply

that y∗ is the first best rule and clearly this leads to monotone YS and YB (though not necessarily

strictly monotone). In order to verify that neglecting the monotonicity constraints for YB and YS

in the derivation of (9) was immaterial provided that the signal structure is optimal, it is therefore

sufficient to concentrate on the case λ > 0; that is, the case where the budget balance constraint

(7) binds. Suppose now the buyer’s monotonicity constraint was binding, that is YB(vi) = YB(vi+1)

for some i ∈ {1, . . . , n − 1}. The proof of the following lemma shows that “merging the two signals

into one” would not affect the objective but strictly relax the binding budget balance constraint – a

contradicition. The intuition is that merging the signals leads to coarser information and therefore

to lower information rents. However, there is no downside in terms of welfare as YB(vi) = YB(vi+1)

implies that the additional information present in the original information structure is not used to

5For notational convenience, I will then state and prove the results assuming that there are n (m) buyer (seller)
signals and all these signals have strictly positive probability, i.e. ωi > 0 and γj > 0 for all i and j. If it is optimal to
use only n∗ < n (m∗ < m) signals though n (m) signals are allowed, the results obviously still hold as the solution is
equivalent to the solution with n∗ (m∗) in place of n (m).
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determine the efficient allocation. The lemma is stated and proven for a finite number of signals.

However, this is for notational convenience only and the result holds generally as “merging signals”

for which the monotonicity constraint binds generally relaxes the budget balance constraint without

affecting welfare.

Lemma 3. If the budget balance condition binds in the welfare optimal information structure with at

most n buyer signals and m seller signals, then YS is strictly decreasing and YB is strictly increasing

in the optimal mechanism.

Lemma 3 establishes that YB and YS are strictly monotone if the budget balance constraint binds.

The following lemm establishes that the budget balance will indeed hold with equality in the optima

information structure. Intuitively, finer information structures and therefore a more efficient allocation

would be feasible if the budget balance constraint was slack.

Lemma 4. Assume that a fully informative signal structure does not achieve first best welfare. The

budget balance constraint is then satisfied with equality in the welfare optimal information structure

with at most n (m) buyer (seller) signals.

The previous two lemmas established that the optimal decision rule is indeed characterized by (9)

and neglecting the monotonicity constraints in its derivation is immaterial as YB and YS will be strictly

monotone. It is now worthwhile to return to (9). This optimality condition can be stated in terms of

virtual valuations. That is, a buyer with signal vi trades with a seller of signal cj if his virtual valuaton

exceeds the one of the seller. The virtual valuation are defined as

V VB(vi) = vi − (vi+1 − vi)
λ

1 + λ

1−Wi

wi

V VS(vj) = cj + (cj − cj−1)
λ

1 + λ

Γj−1

γj
.

Strict monotonicity of YB implies that higher buyer signals must lead to higher virtual valuations. It

also implies that between the virtual valuation of any two buyer signals there has to be the virtual

valuation of a seller signal. The reason is that otherwise the two buyer signals would have the same

probability of trade, i.e. the monotonicity constraint holds with equality and it would be better to

merge the signals. Hence, seller and buyer signals will alternate in terms of virtual valuations.

The first main result establishes that the optimal information structure is a monotone partition

of the type space. That is, each signal vi corresponds to an interval of types. If HB is discrete, a

monotone partition can assign a given type with positive probability mass with some probability to

vi and some probability to vi+1. It is then easier to think of a partition of [0, 1] where each signal

vi corresponds to an interval (ai, bi] ⊂ [0, 1] such that (i) signal vi has probability mass bi − ai in F

and (ii) the types in H−1
B ((ai, bi]) receive signal vi where H−1

B is the generalized inverse of HB . The

optimal information structure with no more than n elements can therefore be completely described by

n− 1 cutoffs.

Proposition 1. The optimal information structure with (at most) n buyer and m seller signals is a

monotone partition (up to a measure zero set).

The main idea behind the proof of proposition 1 is that an information structure that is not a

monotone partition allows for both “mixing” and “demixing”. Mixing refers here to the process of

making an information structure coarser by moving two signals closer together. That is, if F assigns

probabilities ωi to vi and ωi+1 to vi+1, there is always a feasible information structure that uses the

same probabilities but uses signals v′i and v′i+1 a bit closer together. This can be achieved by sending

9



the types that receive signal vi (vi+1) under F with some small probability the signal v′i+1 (v′i) instead.

If F is not a monotone partition, the opposite is possible: There is a feasible information structure

that differs from F only by moving the signals vi and vi+1 apart from one another. The proof shows

that welfare can always be improved by one of the two operations if both, mixing and demixing, are

possible. It follows that the optimal information structure has to be a monotone partition where further

demixing is impossible.

The following lemma derives an additional result for discrete type distributions. The lemma com-

plements proposition 1 well and the combination of these two results allows to establish a finite upper

bound on the size of the support of F (G) in case the type distribution HB (HS) is finite.

Lemma 5. Let the true type distribution of buyer valuations HB be discrete and let its support be

{v̂1, v̂2, . . . }. If v̂i and v̂i+1 are in the support of the optimal signal distribution, then the optimal

information structure assigns zero probability to all signals in (v̂i, v̂i+1). (An analogous result holds for

sellers.)

Proposition 1 and lemma 5 taken together imply that finite type distributions lead to finite welfare

optimal information structures: A monotone partition of a finite distribution with k elements in its

support could lead to a signal structure with at most 2k − 1 elements. With the restriction imposed

by lemma 5, however, the optimal information partition can have at most k elements.6

Corollary 1. Let the number of elements in the support of HB (HS) be finite and denote it by k.

Then the support of the optimal signal structure for the buyer (seller) contains at most k elements.

Corollary 1 is important because arbitrary distributions of types HS and HB can be approximated

arbitrarily closely by a probability distribution with finite support. For these distributions, the optimal

signal structure is finite by corollary 1 and a monotone partition of the type space by proposition 1.

Consequently, the optimal information structure can in general be approximated arbitrarily closely by

a finite monotone partition of the type space. This property provides some justification for the focus on

optimal finite information structures in the preceding lemmas and proposition. The following lemma

formalizes the just mentioned approximation idea.

Lemma 6. Take any information structure (F,G) and denote expected welfare in this information

structure (using the optimal mechanism) by WFG. Then for any ε > 0 there exists an information

structure (Fn, Gn) with finite support such that welfare under (Fn, Gn) (using the optimal mechanism)

is at least WFG − ε.

The previous results established properties of the optimal information structure. The following

result describes the optimal mechanism given the optimal information structure. In particular, it es-

tablishes that the optimal mechanism is deterministic. Note that the optimal mechanism for generic

discrete information structures is not deterministic because generically the budget balance constraint

does not hold with equality in deterministic mechanisms. The example in section 1.1 gives an illustra-

tion of this and also clarifies why stochastic mechanisms are not welfare maximizing: The only reason

for a stochastic mechanism is to relax the binding incentive compatibility constraint for some signal and

thereby the budget balance constraint. However, the example demonstrates that information design –

in particular mixing the signal whose incentive compatibility constraint has to be relaxed with a worse

signal – is a more efficient way of achieving the goal of relaxing these constraints.

6For example, a distribution with probability 1/2 on 0 and probability 1/2 on 1 could be monotonically partitioned
into a signal structure putting probability 1/3 on each element of {0, 1/2, 1}. However, lemma 5 does not allow a signal
in (0, 1) if both 0 and 1 have positive probability in the signal structure. Consequently, the support of the optimal signal
structure will contain only two elements in this example.
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Proposition 2. Assume that a fully informative signal structure does not achieve first best welfare.

Given the optimal information structure with n (m) buyer (seller) signals, y(vi, cj) ∈ {0, 1} for all

i = 1, . . . , n and j = 1, . . . ,m in the optimal mechanism.

5. Optimal binary signal structure

One important implication of corollary 1 for the binary case is that the optimal information structure

has binary support if the true type distribution is binary. As binary type distributions do not only

provide more structure but are also often used in the (applied) literature (Kamenica and Gentzkow,

2011; Taneva, 2018), it makes sense to investigate the binary case in more detail.

Before exploiting the binary structure of the true binary distribution, two results are stated that

make only use of the restrction n = m = 2. In other words, lemmas 7 and 8 also hold if only the signal

distribution is restricted to be binary while the type distribution may not be binary.

One result generalizing the initial example in section 1.1 is that the optimal mechanism enforces

trade if and only if the expected value is above expected cost. For simplicity, the signals concerning

costs (value) are denoted in this secition by cl (vl) and ch (vh) with ch > cl (vh > vl).

Lemma 7. Consider the optimal mechanism under the optimal information structure for n = m = 2.

Then y(vl, ch) = 0 and y(vh, cl) = 1.

Intuitively, 7 has to be true as y(vl, ch) > 0 would imply that vl ≥ ch and therefore trade irrespective

of the signal at price (vl + ch)/2 would be optimal. This is outcome equivalent to pooling all types

and cannot be optimal as information design could be used to rule out some inefficient trades.

Lemma 8. Consider the optimal mechanism under the optimal information structure for n = m = 2.

Then the optimal mechanism enforces trade if and only if the buyer signal exceeds the seller signal.

Clearly, the “only if” part holds by (9). To illustrate the “if” part of lemma 8 consider signals ch

and vl. By lemma 7, y(vl, ch) = 0 and therefore it is necessary to establish that ch ≥ vl. If this was not

the case, a fixed price mechanism at price (vl + ch)/2 (and trade irrespective of signal) would clearly

be feasible and improve welfare. Put differently, if trade did not take place although expected value

is above expected cost (conditional on signals), then a fixed price mechanism would improve welfare.

This method of proof is admittedly specific to the binary signal case.

5.1. Binary type distribution

This section considers the case where the true type distribution is binary. For future reference, corollary

1 is restated in a slightly more precise fashion for the binary type case.

Corollary 2. Let the true buyer valuation (seller cost) distribution have binary support. Then the

optimal signal structure for the buyer (seller) has binary support and at least one element of the

support is also an element of the support of the true valuation (cost) distribution.

By corollary 2, the optimal signal distribution is binary if types are binary and one of the valuation

signals as well as one of the cost signals must be fully informative. At some places it will be useful to

denote the true cost and valuation types by c < c̄ and v < v̄. Assumption 1 can then be written as

c < v < c̄ < v̄.

Lemma 9. Consider the optimal mechanism under the optimal information structure for binary type

support. Then y(vl, cl) = 1 = y(vh, ch) and both vh = v̄ and cl = c.

11



Lemma 9 leaves only the option that trade occurs unless both signals are “bad”. The lemma does

not entirely describe the information structure as it does not indicate with which probability v̄ (c) types

receive the vl (ch) signal. However, the budget balance constraint has to be satisfied with equality

(unless a fully informative signal structure yields a budget surplus). Hence, the search for the optimal

information structure is equivalent to a maximization problem over two variables with one constraint

or – as the constraint can be solved explicitly for one of the variables – an optimization problem over

one variable without constraint, see appendix D. It is even possible to show that the objective in the

latter problem is convex and therefore the solution is a corner solution. This means that one of the

two players will have a fully informative signal while the other’s signal has just enough noise to ensure

that budget balance holds. The optimal information structure is therefore one of the following two7

1. buyer revealing : vh = v̄, vl = v, cl = c and ch =
γ−γBBl (ω̄)

1−γBBl (ω̄)
c+

1−γ
1−γBBl (ω̄)

c̄ while γl = γBBl (ω̄) and

ωh = ω̄

2. seller revealing : vh = v̄, vl =
ω̄−ωBBh (γ)

1−ωBBh (γ)
v̄ + 1−ω̄

1−ωBBh (γ)
v, cl = c, ch = c̄ while γl = γ and

ωh = ωBBh (γ).

It is straightforward to compute welfare in each of the two solution candidates above and the

candidate achieving the highest welfare is the optimal information structure. This comparison leads

to the following result that completely describes the optimal information structure and mechanism in

case of binary types.

Proposition 3. Let the support of HS and HB be binary. Then the optimal information structure is

buyer revealing if and only if

(1− γ)(v̄ − c̄)
(1− ω̄)(v − c)

ω̄ − 1

2

(
1 +

γ(v̄ − c)
c̄− γc− (1− γ)v̄

)
+

√√√√1

4

(
1 +

γ(v̄ − c)
c̄− γc− (1− γ)v̄

)2

−
γω̄(v̄ − v) + γ(v − c)
c̄− γc− (1− γ)v̄


≥

γ − 1

2

(
1 +

ω̄(v̄ − c)
ω̄v̄ − v + (1− ω̄)c

)
+

√
1

4

(
1 +

ω̄(v̄ − c)
ω̄v̄ − v + (1− ω̄)c

)2

−
ω̄(v̄ − c̄) + ω̄γ(c̄− c)
ω̄v̄ − v + (1− ω̄)c


and seller revealing if the reverse inequality holds.

The resulting welfare can be compared to first best welfare

W fb = ω̄v̄ + (1− ω̄) ∗ γv − γc− (1− γ)ω̄c̄.

Note that it is without loss of generality to set v̄ = 1: Dividing all types by v̄ will divide all

constraints as well as the objective by v̄ and therefore not affect the optimization problem. (Put

differently, signals in the optimal information structure will be the previous optimal signals divided

by v̄. First and second best welfare will be divided by v̄ as well.) With this normalization each of

the remaining parameters, i.e. v, c, c̄, γl, ωh, is in the compact set [0, 1] and consequently it is easy

to numerically search for the parameter constellation in which the ratio of second best and first best

welfare is minimal. Note that the just described normalization does not affect the ratio of second

best and first best welfare. I computed this ratio numerically for all parameter values on a grid

with stepsize 0.01, i.e. all parameter values ω̄, γ ∈ {0.01, 0.02, . . . , 0.99} and c ∈ {0.0, 0.01, . . . , 0.97},
v ∈ {c+0.01, . . . , 0.98}, c̄ ∈ {v+0.01, . . . , 0.99} are considered. The lowest ratio was 0.95417 which was

7The function γBBl (ωh), which is defined in appendix D, gives the γl necessary to satisfy budget balance with equality

for a given ωh. ωBBh (γl) is defined analogously.
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achieved at ω̄ = γ = 0.04, c = 0, c̄ = 0.99, v = 0.01. This means that the combination of information

and mechanism design can limit the loss due to asymmetric information to less than 5% in a binary

type bilateral trade setting. The ratio of first best to second best welfare when using the optimal

mechanism but not using information design is a natural comparison point. In this case the lowest

welfare ratio equals 0.89189 which was achieved at the same parameter constellation, i.e. ω̄ = γ = 0.04,

c = 0, c̄ = 0.99, v = 0.01. This shows that information design can close more than half of the welfare

gap left by mechanism design in a binary type bilateral trade setting.

6. Example: Uniform type distribution

Another often used example is the uniform distribution on [0, 1], i.e. HS(x) = HB(x) = x for x ∈ [0, 1].

In this setting, first best welfare equals 1/6 = 0.16̄. With fully revealing signals the optimal mechanism

is to trade if and only if v − c ≥ 1/4 and this leads to second best welfare equal to 9/64 = 0.140625.

Without information design, only 84.375% of first best welfare can be achieved due to asymmetric

information. Table 3 presents results of a numerical analysis of this problem in which the optimal

information partition with n buyer and n seller signals was derived.8 For n ≥ 5, the optimization

algorithm used less than n types and welfare did not increase further. Information design closes almost

the whole gap to first best welfare in this example as 97.55% of first best welfare can be achieved in

the optimal information structure.

n welfare W/W fb buyer signals seller signals
1 0 0 0.5 0.5
2 0.1482 .8892 0.1666, 0.6666 0.3333, 0.8333
3 0.16 .9667 0.1, 0.4, 0.8 0.2, 0.6, 0.9
4 0.1625 .9753 0.05030, 0.2482, 0.5474, 0.8494 0.1018, 0.3536, 0.6765, 0.9247
5 0.1626 .9755 0.0525, 0.2322, 0.5356, 0.8406, 0.9847 0.0855, 0.3386, 0.6660, 0.8919, 0.9790

Table 3: Optimal information structures for uniform type distributions on [0, 1] (numerical analysis,
rounded to fourth digit)

7. Conclusion

This paper characterizes the welfare optimal information structure and mechanism in a bilateral trade

setting. A closed form solution is derived for the special case in which the support of the true type

distribution is binary. While the derivation is not straightforward the resulting information structure

and mechanism are strikingly simple in this binary case: the optimal information structure is fully

informative for one player and binary for the other player. The latter player receives either a signal

fully revealing that he is a “good type” or a noisy signal. The optimal information structure renders

the use of complicated mechanisms unnecessary: The optimal mechanism is deterministic and enforces

trade if and only if – conditional on the signals – expected value is above expected costs.

With more general finite type distributions, the optimal information structure is a monotone parti-

tion of the type space and the optimal mechanism is deterministic. For type distributions with infinite

support, welfare under the optimal information structure can be approximated arbitrarily closely by

welfare in finite information structures that are monotone partitions of the type space. Generally, the

8The numerical analysis first creates a grid of possible information structures with n buyer and seller signals and
maximizes welfare by brute force on this grid. The optimal information structure from this brute force method is used
as a starting value for an optimization algorithm. The algorithm used is “MMA (Method of Moving Asymptotes)” as
implemented in the NLopt package, see Johnson (2019) and Svanberg (2002). The code is available on the website of
the author (https://schottmueller.github.io/). The usual disclaimer for numerical work applies, i.e. the solution is
not exact and information partitions leading to even higher welfare are in principle possible.
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budget balance constraint will hold with equality while the monotonicity constraint will be slack. If

the true type distribution is finite, the number of signals will never exceed the number of types.

Welfare in the optimal information structure can be interpreted as an upper bound on the welfare

achievable in light of asymmetric information by any institutional framework. Consequently, the welfare

loss compared to first best can be interpreted as the welfare loss that is fully attributable to information

asymmetries. In the binary type setting this information loss is less than 5% of first best welfare. This

is significantly less than the welfare loss without information design (while using the welfare optimal

mechanism as in Myerson and Satterthwaite (1983)) which can exceed 10%.
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Appendix

A. Correlated signals

In the bilateral trade setup of this paper it is straightforward to show that first best welfare is achievable

if one considers correlated information structures. To this end, consider a signal structure that maps

each pair of types (v, c) to itself, i.e. each player receives a signal equal to the true type vector (v, c).

Amend this signal structure with the mechanism

y((vB , cB), (vS , cS)) =

1 if vB = vS ≥ cB = cS

0 else

tB((vB , cB), (vS , cS)) = tS((vB , cB), (vS , cS)) =

(vB + cB)/2 if vB = vS ≥ cB = cS

0 else

where the first (second) argument in y, tB and tS is the reported buyer (seller) signal. It is straigh-

forward to see that this mecahnism is incentive compatible and satisfies the participation constraint.

Most importantly, it achieves first best welfare by essentially eliminating the information asymmetry

between buyer and seller.

B. Auxilliary results

Lemma 10. Take a direct mechanism (y, tS , tB) that satisfies (IR), (ICB), (ICS) and ex ante budget

balance. Then there is a direct mechanism (y, t̃S , t̃B) that satisfies (IR), (ICB), (ICS) and the ex post

budget balance constraint t̃S(vi, cj) = t̃B(vi, cj) for all vi ∈ {v1, . . . , vn} and cj ∈ {c1, . . . , cm}.

Proof. With a slight abuse of notation denote by TS(vi) =
∑m
j=1 ts(vi, cj)γj the expected transfer of

the seller conditional on the buyer type being vi. Now define the new payment rules

t̃B(vi, cj) = tB(vi, cj) + [tS(vi, cj)− tB(vi, cj)]− [TS(vi)− TB(vi)]

t̃S(vi, cj) = ts(vi, cj)− [TS(vi)− TB(vi)] .

Clearly, t̃S(vi, cj) = t̃B(vi, cj) and therefore ex post budget balance holds. Furthermore, T̃B(vi) =

TB(vi) for all vi and similarly T̃ (cj) = T (cj) for all cj by the assumption that (y, tS , tB) is ex ante

budget balanced. As y – and therefore Ys and YB – di not change, this implies that (y, t̃S , t̃B) staisfies

(IR), (ICB), (ICS) because (y, tS , tB) did.

C. Proofs of results in the text

Proof of lemma 1: If: Let (4) hold and YB be increasing. Take i > k. Iterating (4), yields

U(vi) = U(vk) +

i−1∑
j=k

ỸB(vj)(vj+1 − vj). (10)

As ỸB(vj) ≥ YB(vj) and YB is increasing, this implies

U(vi) ≥ U(vk) +

i−1∑
j=k

YB(vk)(vj+1 − vj)

= U(vk) + YB(vk)(vi − vj).

15



Hence, (ICB) is satisfied for vi and vk. Similarly starting from (10), ỸB(vj) ≤ ỸB(vj+1) and YB being

increasing implies

U(vi) ≤ U(vk) +

i−1∑
j=k

YB(vi)(vj+1 − vj)

and therefore U(vk) ≥ U(vi) + YB(vi)(vk − vi) which means that (ICB) is satisfied for vk and vi.

Only if: Let (ICB) being satisfied. For k = i − 1, (ICB) is equivalent to U(vi) − U(vi−1) ≥
YB(vi−1)(vi − vi−1). Using the incentive constraint that vi−1 does not want to misrepresent as vi,

(ICB) can be rearranged to U(vi−1)−U(vi) ≥ YB(vi)(vi−1−vi). Taking these two inequalities together

gives

YB(vi) ≥
U(vi)− U(vi−1)

vi − vi−1
≥ YB(vi−1).

Hence, YB is increasing and (4) holds with ỸB(vi−1) = [U(vi)− U(vi−1)]/[vi − vi−1].

The proof for the seller is analogous.

Proof of lemma 2: Suppose to the contrary that all seller types are pooled on one signal E[c]. In this

case, the optimal mechanism is clearly a fixed price mechanism with price equal to E[c]. Consequently,

the optimal information structure for the buyer is without loss of generality binary: One signal vl

for all types below E[c] and one signal vh for all types above E[c]. By assumption 1, vh has positive

probability mass denoted by ωh. The argument now depends on whether vl has positive probability

mass.

As a first case assume that vl has positive probability. I will change now the seller information

structure and the mechanism in two steps and show that a welfare increasing budget balanced im-

provement exists. In the first step, change the information structure of the seller to an information

structure with two signals cl = vl and ch ∈ (E[c], vh) while maintaining the mechanism y(vh, ·) = 1

and y(vl, ·) = 0. By assumption 1, such an information structure in which both cl and ch have

positive probability exists.9 Note that welfare is the same as before because the trading probabiltiy

between any two types have not changed. Furthermore, the budget balance constraint can be written

as ωh(vh − ch) > 0, i.e. the budget balance condition is slack. In a second step, increase y(vl, cl)

from 0 to ε > 0 where ε is chosen small enough to keep the budget balance condition, which reads

ωh(vh−ch)−εγl(ωh(vh−cl)−vl+cl) ≥ 0, slack. As vl = cl, welfare is again unchanged. In a final step,

change the seller’s information structure such that γl, the probabiltiy of receivng the low signal, stays

the same but cl = vl − ε′ and ch ∈ (E[c], vh) which is again possible by assumption 1 for ε′ > 0 small

enough. As y(vl, cl) = ε ∈ (0, 1), this increases expected welfare. For ε′ > 0 small enough the budget

balance constraint is not violated as it is continuous in ε′ and was slack for ε′ = 0. This establishes an

information structure and mechanism satisfying budget balance and yielding a strictly higher welfare

than the initial structure in which the seller’s types were pooled.

As second case assume that vl has zero probability mass, i.e. E[c] ≤ min supp(HB) and both seller

and buyer types are pooled on a single signal each in the supposedly optimal information structure.10

The optimal mechanism clearly enforces trade with probability 1 in this case. I will change the signal

structures in several steps maintaining budget balance in each step and (weakly) increasing welfare in

each step. By assumption 1, there exists an s ∈ [min supp(HS),max supp(HB)] and an ε > 0 such that

HB(s) > ε and 1 − HS(s) > ε. In a first step, change both players information structure to binary

signals such that signal ch = vl = s is sent with probability ε and the signals cl < ch and vh > vl

are sent with probability 1 − ε (where cl and vh are chosen such that the expected value equals the

expected value of the type distribution; by the definition of s and ε such a distribution is feasible). The

9For example, let γl = HS(vl)/2 where HS(vl) > 0 by assumption 1 as vl ≥ min supp(HB) > min supp(HS).
10An argument analogous to the first case establishes also that E[v] ≥ max supp(HS) in this case.
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new information structure leads to the same welfare when maintaining trade with probability 1 and is

clearly budget balanced as a fixed price mechanism with price s is possible. In a second step, change

the mechanism by setting y(vl, ch) = 0. As vl = ch, this does not affect welfare and as the change

relaxes the budget balance constraint, this constraint holds now with strict inequality. In a final step,

increase ch slightly and decrease cl slightly while both signals are still sent with probabilities ε and 1−ε
(the decrease in cl is, of course, chosen such that the expected value is maintained). This is feasible as

1−HS(ch) = 1−HS(s) > ε by the definition of ε. Since the budget balance constraint is continuous

in signals, a sufficiently small change will not violate this constraint. Furthermore, welfare is strictly

increased as costs conditional on trade decreases – due to YS(ch) < YS(cl) – and the probability of

trade is unaffected.

Proof of lemma 3: Suppose to the contrary YB(vi) = YB(vi+1) for some i ∈ {1, . . . , n − 1} in the

optimal mechanism under the optimal information structure. In case the monotonicity constraint binds

for more than two signals, let vi be the lowest signal for which it binds. Now consider an information

structure in which signals vi and vi+1 are merged, that is, every type v that got either signal vi or vi+1

will now get signal

ṽ =
ωi

ωi + ωi+1
vi +

ωi+1

ωi + ωi+1
vi+1

and nothing changes for other types. Adapt the decision rules y by letting

ỹ(ṽ, cj) =
ωi

ωi + ωi+1
y(vi, cj) +

ωi+1

ωi + ωi+1
y(vi+1, cj).

Note that this construction implies that ỸS = YS and ỸB(vk) = YB(vk) for all k ∈ {1, . . . , i − 1, i +

2, . . . , n} and in particular ỸB(ṽ) = YB(vi) = YB(vi+1). The objective (1) which can be written as∑
i ωiYB(vi)vi −

∑
j γjYS(cj)cj is therefore unchanged by the merging of signals. However, constraint

(7) is strictly relaxed by the merging of signals: Note that (7) can be written as

{
n∑
i=1

YB(vi)ωi

[
vi − (vi+1 − vi)

1−Wi

ωi

]}
−


m∑
j=1

YS(cj)γj

[
cj + (cj+1 − cj)

Γj
γj

] ≥ 0.

The merging of types affects only the two terms for vi and vi+1 as YS and YB for other signals were

not affected. Hence, the relevant two terms are (using the notation ω̃ = ωi + ωi+1)

−YB(vi−1)vi(1−Wi−1) + YB(vi) [ωivi − (vi+1 − vi)(1−Wi)] + YB(vi+1) [ωi+1vi+1 − (vi+2 − vi+1)(1−Wi+1)]

= −YB(vi−1)vi(1−Wi−1) + ỸB(ṽ) [ṽω̃ − (vi+1 − vi)(1−Wi)− (vi+2 − vi+1)(1−Wi+1)]

= −YB(vi−1)ṽ(1−Wi−1) + YB(vi−1)(ṽ − vi)(1−Wi−1)

+ỸB(ṽ) [ṽω̃ − (vi+1 − vi)(1−Wi+1)− (vi+2 − vi+1)(1−Wi+1)]− ỸB(ṽ)(vi+1 − vi)ωi+1

= −YB(vi−1)ṽ(1−Wi−1) + YB(vi−1)(ṽ − vi)(1−Wi+1 + ωi + ωi+1)

+ỸB(ṽ) [ṽω̃ − (vi+2 − vi)(1−Wi+1)]− ỸB(ṽ)(vi+1 − vi)ωi+1

= −YB(vi−1)ṽ(1−Wi−1) + YB(vi−1)(ṽ − vi)(1−Wi+1) + YB(vi−1)(vi+1 − vi)ωi+1

+ỸB(ṽ) [ṽω̃ − (vi+2 − ṽ)(1−Wi+1)]− ỸB(ṽ)(vi+1 − vi)ωi+1 − ỸB(ṽ)(ṽ − vi)(1−Wi+1)

= −YB(vi−1)ṽ(1−Wi−1) + ỸB(ṽ) [ṽω̃ − (vi+2 − ṽ)(1−Wi+1)]

+(YB(vi−1)− ỸB(ṽ))(ṽ − vi)(1−Wi+1) + (YB(vi−1)− ỸB(ṽ))(vi+1 − vi)ωi+1

< −YB(vi−1)ṽ(1−Wi−1) + ỸB(ṽ) [ṽω̃ − (vi+2 − ṽ)(1−Wi+1)]
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where the first equality uses YB(vi) = YB(vi+1) = ỸB(ṽ) and the definition of ṽ, the inequality uses

ỸB(ṽ) = YB(vi) > Y (vi−1) (recall that i was the lowest pooled type). Note that the term we end up

with is exactly the term refering to ṽ in (7) under the modified ỹ. Consequently, the merging of signals

strictly relaxed the binding constraint without affecting the objective which contradicts the optimality

of y.

The proof for the seller is analogous.

Proof of lemma 4: Suppose the budget balance constraint was slack under the optimal signal

structure (F,G), i.e. held with strict inequality, but violated under the truthful information structure

(HB , HS). In this case λ = 0 under (F,G) and (9) implies that trade takes place if and only if value

is above costs. By lemma 3, the optimal information structure can be chosen such that YB or YS are

strictly monotone. (If these functions are flat, merging types will relax the budget balance constraint

without affecting welfare, see the proof of lemma 3.) It is therefore without loss of generality to

assume that YS and YB are strictly monotone. Note that welfare can be written as
∑n
i=1 ωiviYB(vi)−∑m

j=1 γjcjYS(cj). By the assumption that the budget balance constraint is violated in case of a fully

informative signal to both players, at least one player’s signal is noisy. For concreteness, say this is

the buyer, i.e. F 6= HB and HB is a mean preserving spread of F . The intuition is now as follows:

Consider a feasible F̃ that is close to F but somewhat more spread out than F . As F̃ is feasible,∑n
i=1 ωivi is the same under F and F̃ but as F̃ is more spread out

∑n
i=1 ωiviYB(vi) is higher under F̃

than under F because YB is strictly increasing. Choosing F̃ close to F , the budget balance constraint

is not violated under F̃ and therefore (F,G) cannot be optimal. More concretely, I distinguish two

cases.

First, consider the case that F is not the result of a monotone partition of the type space. Then

there exist signals vi and vj with vi > vj and ε, ε′ > 0 such that reducing vj to vj − ε and increasing

vi to vi + ε′ while keeping all other signals and the probability of each signal the same is a feasible

signal distribution. By feasibility
∑n
i=1 ωivi did not change and therefore

∑n
i=1 ωiviYB(vi) is higher

because YB is strictly increasing. This contradicts the optimality of F . Given that the budget balance

constraint was slack initially, it will still hold for ε, ε′ > 0 sufficiently small as (6) is continuous in vi

and vj .

Second, consider the case that F is the result of a monotone partition of the type space. Take

two signals vi and vi+1 and change the signal structure by moving the ε > 0 highest types receiving

signal vi to signal vi+1 (i.e. reduce the partition cutoff between these two signals slightly). This will

reduce both vi and vi+1 as well as ωi while increasing ωi+1. Denote the new signals by ṽi and ṽi+1.

As ωivi + ωi+1vi+1 = (ωi − ε)ṽi + (ωi+1 + ε)ṽi+1 by the feasibility of the changed signal distribution,

(ωi−ε)ṽi < ωivi and (ωi+1 +ε)ṽi+1 > ωi+1vi+1. But this implies that
∑n
i=1 ωiviYB(vi) is higher under

the changed information structure as YB is strictly increasing. For ε > 0 sufficiently small, the budget

balance constraint is still satisfied given that it was initially slack as (6) is continuous in vi, vi+1, ωi

and ωi+1.

Proof of proposition 1: We show the result for the buyer. Suppose by way of contradiction that the

optimal (vi)
n
i=1 and (ωi)

n
i=1 do not form a monotone partition (up to a measure zero set). This implies

that there exists some i ∈ {1, . . . , n} and a set of true valuation types Ni with some mass η > 0 that

receives signal vi and a set of true valuation types Ni+1 with mass η > 0 that receives signal vi+1 such

that E[v|v ∈ Ni] > E[v|v ∈ Ni+1]. We will return to these sets later.

Consider for now the optimization problem of maximizing expected welfare subject to budget

balance: Maximize expected welfare, i.e.
∑
i

∑
j ωiγj(vi − cj)y(vi, cj), over y, (vi)

n
i=1, (cj)

m
j=1, ωi and

γj subject to (7), i.e. the budget balance constraint. Let the domain for y be [0, 1] and the domain

for (ωi)
n
i=1, (vi)

n
i=1 is the set of all distributions such that F is a mean preserving spread of these
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distributions. Respectively, the domain of (γj)
m
j=1, (cj)

m
j=1 is such that G is a mean preserving spread

of these distributions. Note that incentive compatibility and individual rationality will be automatically

satisfied by the solution due to substituting the expressions from lemma 1 and individual rationality

into the budget constraint in order to obtain (7). (By lemma 3 the monotonicity constraint is slack.)

That is, the solution to this program will be the optimal information structure and mechanism if the

number of buyer (seller) signals is restricted to no more than n (m).11 Writing the Lagrangian for this

optimization problem with Lagrange parameters λ for the budget balance constraint yields:

L =

n∑
i=1

m∑
j=1

{
y(vi, cj)ωiγj

[
(1 + λ)vi − λ(vi+1 − vi)

1−Wi

ωi
− (1 + λ)cj − λ(cj − cj−1)

Γj−1

γj

]}

A solution to this finite-dimesional problem exists by the Weierstrass theorem as the feasible set is

compact and non-empty and the objective is continuous. Consider L evaluated at the solution values

for y, (ωi)
n
i=1, (γj)

m
j=1 and (cj)

m
j=1. Given that, the optimal values for (vi)

n
i=1 have to maximize L

(within the feasible set of vi, i.e. all those (vi)
n
i=1 that yield together with (ωi)

n
i=1 a distribution

such that F is a mean preserving spread of it). Now consider the following family of buyer valuation

distributions indexed by ε which I denote by (ṽi)
n
i=1: Fix all valuations apart from some ṽi and ṽi+1

at their optimal levels (i.e. at the values that are part of the solution of the maximization problem

above) and let

ṽi(ε) =
(ωi − ε)vi + εvi+1

ωi

ṽi+1(ε) =
(ωi+1 − ε)vi+1 + εvi

ωi+1

where vi and vi+1 are the solution values in the maximization problem above. As vi(0) = vi and

vi+1(0) = vi+1, the auxiliary maximization problem of maximizing L over ε (where all variables apart

from ṽi and ṽi+1 are fixed at their optimal solution) must be solved by ε = 0 (if the information

structure is feasible for ε in an open neighborhood around 0). The corresponding derivative of L with

respect to ε is

dL
d ε

= (vi+1 − vi) [YB(vi)(1 + λ+ λ(1−Wi)/ωi)− YB(vi−1)λ(1−Wi−i)/ωi]

− (vi+1 − vi) [YB(vi+1)(1 + λ+ λ(1−Wi+1)/ωi+1)− YB(vi)λ(1−Wi)/ωi+1] (11)

Note that the derivative does not depend on ε, i.e. L in the auxiliary maximization problem is linear

in ε. It is straightforward to see that (ṽi)
n
i=1 is feasible for ε ≥ 0 if ε ≥ 0 is not too high. (Essentially

ṽi and ṽi+1 use the optimal information structure which is feasible and then swap the signal for ε of

those types receiving signals vi and vi+1 in the optimal information structure. Clearly, this does not

change ωi or ωi+1 and yields a new feasible information structure.) I will now show that (ṽi)
n
i=1 are

also feasible for ε < 0 (not too far from 0) if the optimal information structure is not a monotone

partition. After ruling out that the slope of L in ε is zero, this will complete the proof as feasibility

for ε in an open interval around 0 means that ε = 0 cannot maximize the linear L in the auxiliary

problem. This contradiction establishes that the optimal information structure (for the buyer) must

be a monotone partition.

To see that ε < 0 is feasible, consider changing the information structure by swapping the signal of

mass τ < η in Ni and Ni+1, i.e mass τ < η of the types in Ni receives signal vi+1 (instead of vi) and

11Strictly speaking one should also add constraints enforcing vi+1 − vi ≥ 0 and cj+1 ≥ cj which will, however, not
change the argument below and only clutter notation further.
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mass τ in Ni+1 receives signal vi (instead of vi+1). This is clearly feasible and does not change ωi or

ωi+1 but the expected valuation when receiving signals vi or vi+1 changes to

ṽi(τ) =
ωivi − τ (E[v|v ∈ Ni]− E[v|v ∈ Ni+1])

ωi

ṽi+1(τ) =
(ωi+1vi+1 + τ (E[v|v ∈ Ni]− E[v|v ∈ Ni+1])

ωi+1
.

Choosing τ = −ε(vi+1 − vi)/ (E[v|v ∈ Ni]− E[v|v ∈ Ni+1]) yields ṽi(ε) and ṽi(ε) for negative ε.

The last step is to rule out that L has slope 0 in ε (when fixing all variables apart from ṽi(ε) and

ṽi+1(ε) at their optimal values). To get a contradiction suppose this was the case and note that this

is only possible if λ > 0, see (11) and recall that YB(vi+1) > YB(vi) by lemma 3. Then there exists an

ε′ > 0 such that

ṽi(ε
′)− (ṽi+1 (ε′)− ṽi(ε′))

λ

1 + λ

1−Wi

ωi
= ṽi+1(ε′)− (vi+2 − ṽi+1(ε′))

λ

1 + λ

1−Wi+1

ωi+1
, (12)

i.e. the two signals have the same virtual valuation.12 L evaluated for ε′ is the same as when eval-

uated at the optimal solution by the assumption that its derivative in ε is zero. As a next step,

change y(vi, ·) and y(vi+1, ·) by assigining the average trading probability, i.e. ỹ(ṽi, cj) = ỹ(ṽi+1, cj) =

y(vi, cj)ωi/(ωi + ωi+1) + y(vi+1, cj)ωi+1/(ωi + ωi+1) for all j = 1, . . . ,m. As both ṽi(ε
′) and ṽi+1(ε′)

have the same virtual valuation and as L is linear in y, this does not change the value of L. Finally,

note that due to the argument in the proof of lemma 3, merging the two signals ṽi(ε
′) and ṽi+1(ε′)

into one signal will not affect welfare but relax the budget balance constraint. Hence, such a merg-

ing of signals will strictly increase L. But this implies that (vi, vi+1, y(vi, ·), y(vi+1, ·)) do not jointly

maximize L in an auxilliary problem in which we fix all other variables at their optimal values. This,

however, contradicts the optimality of (vi, vi+1, y(vi, ·), y(vi+1, ·)).
The argument for the seller is analogous.

Proof of lemma 5: Suppose otherwise, i.e. let the optimal information structure put positive

probability on types v−i < vi < vi+1 and let vi−1 and vi+1 be neighboring elements in the support

of HB . Denote the corresponding probabilities in the optimal information structure by ωi−1, ωi and

ωi+1. We will consider the following alternative distributions indexed by ε:

ω̃i−1(ε) = ωi−1 − ε
vi+1 − vi
vi+1 − vi−1

ω̃i(ε) = ωi + ε

ω̃i+1(ε) = ωi+1 − ε
vi − vi−1

vi+1 − vi−1
.

(All other variables, e.g. cost types probabilities of trade and other valuation types, are fixed at their

optimal levels.) Note that the expected valuation is not affected by changes in ε and as vi−1 and vi+1

are neighboring elements of the true valuation support positive as well as negative ε are feasible (if not

too large in absolute value).

Now consider the Lagrangian L of the maximization problem maximizing expected welfare over ε

subject to the budget balance constraint (fixing all other variables at their optimal level). From the

definition ω̃i−1, ω̃i and ω̃i+1, it is clear the L is linear in ε. As ωi−1, ωi and ωi+1 are by assumption

part of the optimal solution, L has to be maximized by ε = 0. As L is linear in ε and as ε in an open

12To be precise, such an ε′ exists as the left hand side (LHS) of (12) is strictly below RHS for ε′ = 0, LHS is
strictly increasing in ε′ while RHS is strictly decreasing in ε′ and both LHS and RHS are continuous in ε′. Furthermore,
ṽi(ε
′) = ṽi+1(ε′) if ε′ = (ωi+1ωi(vi+1−vi)/(vi+1ωi−viωi+1+i+ 1ωi+1−viωi)) and RHS<LHS for this ε′. Consequently,

the intermediate value theorem implies that an ε′ exists at which LHS=RHS.
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interval around 0 are feasible, this can only be the case if the derivative of L with respect to ε is zero

everywhere. In the following it is shown that this is not possible.

Suppose the derivative of L with respect to ε is zero everywhere. For ε = 0, we have V V (vi−1, 0) <

V V (vi, 0) < V V (vi+1, 0) by lemma 3 (where V V (vi, ε) denotes the virtual valuation of vi for a given

ε). As ε increases the virtual valuations change as ω̃i−1 and ω̃i+1 decrease while ωi increases. Denote

by ε′ > 0 the lowest ε such that (at least) one of the following conditions is met

• V V (vi, ε) = V V (vi+1, ε)

• ω̃i−1(ε) = 0.

For concreteness, let the first condition be met at ε′, i.e. V V (vi, ε
′) = V V (vi+1, ε

′). Note that the

value of L at ε = ε′ is the same as at ε = 0 as the derivative of L with respect to ε is supposed to

be zero. As a next step (which will again not change L), change y(vi, ·) and y(vi+1, ·) to ỹ(vi, cj) =

ỹ(vi+1, cj) = y(vi, cj)ωi/(ωi + ωi+1) + y(vi+1, cj)ωi+1/(ωi + ωi+1) for j = 1, . . . ,m. This change will

not affect L as L is linear in y(vi, cj) with slope equal to the virtual valuation (plus a term that is

constant across buyer signals and therefore unaffected) and both ṽi and ṽi+1 had the same virtual

valuation. As a last step, note that – following the proof of lemma 3 – merging types vi and vi+1

to viωi/(ωi + ωi+1) + vi+1ωi+1/(ωi + ωi+1) with probability ω̃i(ε
′) + ω̃i+1(ε′) will not affect expected

welfare but relax the budget constraint, see the proof of lemma 3. Hence, the value of L increases due

to this change. However, this contradicts that at the optimal solution L is maximized by the “optimal”

values vi−1, vi, vi+1 and ωi−1, ωi, ωi+1 (holding all other variables at their optimal values).

If the other conditions is met at ε′, i.e. ω̃i−1(ε′) = 0, the last step of the proof is similar. If

ω̃i−1(ε′) = 0, eliminating vi−1 will strictly increase L (as vi’s incentive compatibility constraint is

strictly relaxed).

Proof of lemma 6: Consider the hypothetical problem of maximizing expected welfare subject to

budget balance being violated by no more than η (through the choice of an information structure

and mechanism). Denote the by W ∗(η) the value of this maximization problem (more formally, the

supremum of welfare achievable by information structures and mechanisms that do not violate the

ex ante budget balance constraint by more than η). Note that due to the same argument as in the

proof of lemma 4 the budget balance constraint binds and therefore W ∗ is strictly increasing. As both

expected welfare and the budget balance condition are continuous in y, W ∗ is also continuous. Let

η̃ < 0 be such that W ∗(0)−W ∗(η̃) < ε/3. (Note that a negative η indicates a stricter constraint.)

Define the set of distributions Fκ as the set of distributions with cdfs Fκ such that (i) EFκ [v] ≤
EHB [v] − κ and (ii)

∫ x
−∞ Fκ(v) dv ≤

∫ x
−∞HB(v + κ) dv − κ for all x ∈ (−∞,max supp(HB) − κ].

Similarly, define the set G as the set of distributions with cdfs Gκ such that (i) EGκ [c] ≥ EHS [c] + κ

and (ii)
∫ x
−∞Gκ(c) dc ≤

∫ x
−∞HS(c+ κ) dc− κ for all x ∈ (−∞,max supp(HS)− κ]. Note that F0 and

G0 are the feasible sets of distributions in the welfare maximization problem of this paper as the set of

mean preserving spreads of a distribution equals the set of distributions that have the same mean while

also second order stochastically dominating the distribution, see Mas-Colell et al. (1995, ch. 6.D).

Consider now the problem of maximizing welfare subject to budget balance being violated by no

more than η̃ over the sets Fκ and Gκ. Let F and G denote an information structure such that under

this information structure and the optimal mechanism (i) budget balance is violated by at most η̃, (ii)

welfare is above W ∗(η̃) − ε/3 and (iii) F ∈ Fκ̃ and G ∈ Gκ̃ for some κ̃ > 0. Such F , G and κ̃ exist

by the definition of η̃ and as the conditions defining Fκ and Gκ are continuous in κ (while welfare and

budget balance constraint are continuous in signals).

Approximate (F,G) by a series of distributions (Fn, Gn)∞n=1 such that (i) the support of Fn and Gn

have at most n elements and (ii) Fn → F almost everywhere and Gn → G almost everywhere. Then
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Fn (Gn) converges to F (G) weakly and by the Helly-Bray theorem welfare and budget balance under

(Fn, Gn) converge to the corresponding values under (F,G).13 Therefore for some sufficiently high n∗

welfare under (Fn∗ , Gn∗) is above W ∗(η̃) − 2ε/3 > W ∗(0) − ε and budget balance is violated by at

most η̃. But this implies – by η̃ < 0 – that under the finite information structure (Fn∗ , Gn∗) welfare

above W ∗(0) − ε is achievable without violating budget balance. Finally, define F ∗n∗ by “shifting Fn∗

up” such that F ∗n∗ has expected value EHB [v], i.e. F ∗n∗(x) = Fn∗ (x− EHB [v] + EFn∗ [v]) and note that

the definition of Fκ̃ implies EHB [v]−EFn∗ [v] > 0 (for n∗ sufficiently high). Similarly, define G∗n∗(x) =

Fn∗ (x+ EHS [c]− EGn∗ [c]). Note that shifting the distribution of buyer (seller) valuations up (down)

by a constant, increases welfare and relaxes the budget balance constraint, see (7). Consequently,

welfare under (F ∗n∗ , G
∗
n∗) is above W (0)− ε. Furthermore, HB is a mean preserving spread of F ∗n∗ by

the definition of Fκ̃ and similarly HS is a mean preserving spread of G∗n∗ . Consequently, welfare of at

least W (0)− ε can be achieved by a feasible finite information structure.

Proof of proposition 2: The proof is by contradiction, i.e. I show that any information structures

and mechanism such that y(vi, cj) ∈ (0, 1) are not jointly optimal. To do so consider the problem of

maximizing the Lagrangian (8) over y, signals and probabilities. Optimality requires that there is no

feasible information structure and mechanism achieving a higher Lagrangian value than the optimal

mechanism and information structure. For now, assume that the Lagrange parameter λ is strictly

positive. The proof exploits the following intermediate result in a number of ways:

Intermediate Result: In any information structure and mechanism maximizing the Lagrangian,

y(vi, ·) 6= y(vi+1, ·) for any two buyer signal vi and vi+1. Similarly, y(·, cj) 6= y(·, cj+1) for any two

seller signals.

Proof of the intermediate result: Suppose otherwise, i.e. y(vi, ·) = y(vi+1, ·). Now consider an

alternative information structure in which the two types vi and vi+1 are “merged”, i.e. ṽ = (ωivi +

ωi+1vi+1)/(ωi + ωi+1) and ω̃ = ωi + ωi+1 and y(ṽ, ·) = y(vi, ·) while all other variables remain as in

the supposedly optimal mechanism. Clearly, expected welfare is not affected by the merging of types.

However, due to the same steps as in the proof of lemma 3 the budget balance constraint is relaxed

by the merging of types. Consequently, the value of the Lagrangian (8) is increased which contradicts

the optimality of the original information structure. The proof for the seller is analogous.

Suppose to the contrary of proposition 2 that y(vi, cj) ∈ (0, 1). Note that this implies that the

derivative of L with respect to y(vi, cj) equals zero as L is linear in y(vi, cj). Hence, changing y(vi, cj)

to either 0 or 1 does not affect the value of the Lagrangian. If such a change results in two adjacent

types having the same mechanism y, the intermediate result above implies that optimality is violated

as there exists another information structure leading to a strictly higher value of the Lagrangian.

To see that such a change leads to two adjacent types having the same mechanism y, note first

that by the monotonicity of the virtual valuation y(vi, cj) < 1 implies y(vi, ck) = 0 for all k > j and

y(vl, cj) = 0 for all l < i. Furthermore, y(vi, cj) > 0 implies y(vi, ck) = 1 for all k < j and y(vl, cj) = 1

for all l > i; see table 4 for an illustration. This implies that if y(vi+1, cj+1) = 1, then after changing

y(vi, cj) to zero y(·, cj) = y(·, cj+1). If, however, y(vi+1, cj+1) = 0, then after changing y(vi, cj) to 1

y(vi, ·) = y(vi+1, ·). If, y(vi+1, cj+1) ∈ (0, 1), then changing y(vi+1, cj+1) to zero and y(vi, cj) to 1 will

not affect the value of the Lagrangian but then again y(vi, ·) = y(vi+1, ·). Finally, observe that if i = n

or j = m (and therefore there is not vi+1 and cj+1) similar steps can be undertaken with vi−1 and

cj−1 instead of vi+1 and cj+1.

Finally, consider λ = 0. In this case, y(vi, cj) ∈ (0, 1) implies vi = cj by (9). Hence, all the steps

above (in the λ > 0 case) will maintain the Lagrangian value and therefore welfare while – through the

13We use the same mechanism as under (F,G) here. For completeness, define y(v, c) = supv′<v,c′>cy(v′, c′) for all
(v, c) not in the support of (F,G) (and let y(v, c) = 0 if y(v′, c′) is not defined for any v′ < v and c′ > c). This ensures
the monotonicity of YS and YB .
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· · · cj−1 cj cj+1 · · ·
...

...
... · · ·

vi−1 0 0 · · ·
vi · · · 1 y(vi, cj) 0 · · ·
vi+1 · · · 1 1

... · · ·
...

...

Table 4: Implications of strictly monotone virtual valuation and y(vi, cj) ∈ (0, 1)

merging of types – strictly relax the budget balance constraint. The resulting information structure

and mechanism would then be optimal while the budget balance constraint would be slack. This is

according to lemma 4 only possible if the fully informative information structure attains first best

welfare which was ruled out by assumption.

Proof of lemma 7: The proofs will be by contradiction, i.e. I will show a welfare improvement if

the properties do not hold. First, suppose y(vl, ch) > 0. Note that this implies y(vi, cj) = 1 for all

(vi, cj) 6= (vl, ch) by monotonicity of the virtual valuation. By (9), y(vl, ch) > 0 implies vl ≥ ch (with

strict inequality if either vh > vl or cl < ch have positive probability mass) and therefore welfare would

be (weakly) higher if y(vl, ch) = 1, i.e. expected welfare would be higher if all buyer types bought

from all seller types. As vl ≥ ch implies E[v] ≥ E[c] (again with strict inequality if either vh > vl or

cl < ch have positive probability mass), trade with probability 1 is feasible by an information structure

that sends signal E[v] to all buyers and E[c] to all sellers paired with a fixed price mechanism (where

the fixed price is in [E[c],E[v]].) As this information structure is not optimal by lemma 2, there is no

optimal information structure in which y(vl, ch) > 0.

Second, suppose y(vh, cl) < 1. By the monotonicity of the virtual valuation, this implies y(vi, cj) =

0 for all (vi, cj) 6= (vh, cl). By (9), y(vh, cl) < 1 implies vh ≤ cl. The expected welfare in this

mechanism and information structure is therefore at most zero. Hence, it remains to show that there is

an alternative information structure and mechanism yielding strictly positive welfare. By assumption

1, there exists a fixed price t such that the probability that v ≥ t as well as the probability that c ≤ t
is strictly positive. Consider now the information structure that sends a high signal to buyers with

valuation weakly above t and a low signal otherwise. Similarly, let the signal for sellers with c ≤ t be

low and high otherwise. Pair this information structure with a mechanism enforcing trade if and only

if the buyers signal is high and the sellers signal is low at price t. Clearly, this mechanism is incentive

compatible, individual rational, budget balanced and yields strictly positive welfare.

Proof of lemma 8: By proposition 2, y(vl, cl) and y(vh, ch) are in {0, 1}. To show that trade takes

place if and only if expected value is above expected cost note that (9) implies the “only if” part. For

“if” consider first the case where either y(vl, cl) = 0 or y(vh, ch) = 0 (or both). In these cases, the

optimal mechanism is a fixed price mechanism in which the fixed price can be chosen either t = vh or

t = cl and clearly the result holds. The only remaining case is y(vh, ch) = y(vl, cl) = 1 and it remains

to show ch > vl in this case. Consider to the contrary vl ≥ ch. But in this case a fixed price contract at

price t = ch and trade with probability 1 would (weakly) increase welfare while being budget balanced,

incentive compatible and individually rational. As the optimality of y(vl, ch) > 0 in the welfare optimal

information structure was ruled out in lemma 7, the result follows.

Proof of lemma 9: By lemmas 7 and 8, the only other possibilities are (i) y(vl, cl) = 0 = y(vl, ch)

while y(vh, cl) = 1 = y(vh, ch), (ii) y(vl, cl) = 1 = y(vh, cl) while y(vl, ch) = 0 = y(vh, ch) and (iii)

y(vl, cl) = 0 = y(vh, ch) = y(vl, ch) while y(vh, cl) = 1. In (i) costs are not decision relevant and

therefore it is without loss to have only one cost signal. In (ii) valuations are not decision relevant and
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it is without loss to have only one valuation signal. In both cases, the optimality of a single signal

would contradict lemma 2. Therefore, only case (iii) remains to be ruled out which is done next.

Suppose, contrary to the lemma, that y(vl, cl) = 0 = y(vh, ch) = y(vl, ch) while y(vh, cl) = 1,

which means that trade occurs only between the high valuation and the low cost type, note that by

lemma 8 vl ≤ cl and vh ≤ ch. This immediately implies that cl > c and vh < v̄ by assumption 1

and therefore ch = c̄ and vl = v by corollary 2. The next step is to show vh = c̄. By lemma 8,

y(vh, ch) = 0 implies vh ≤ ch = c̄. If vh < c̄, then increasing the probability that a c̄ type receives acl

signal by ε > 0 will improve welfare as it reduces the probability of inefficient trade. The resulting

information structure is clearly fesible for ε > 0 sufficiently small and budget balance still holds as a

fixed price mechanism can be used. Hence, vh = c̄ has to hold. An analogous argument establishes

cl = v. Note that as a consequence there are no gains from trade between a v type receiving signal

vh and a seller of signal cl. I will now change first the information structure and then the mechanism

to achieve higher welfare thereby contradicting the optimality of the original information structure

and mechanism. First, welfare does not change if the buyer receives a fully informative signal (while

holding the seller’s information structure and y fix) because of the previous observation that there are

zero gains from trade between a v type receiving vh and a seller with signal cl. But as v̄ > c̄ ≥ ch

welfare can be strictly increased from there by changing the mechanism y by setting y(vh, ch) = 1

instead of y(vh, ch) = 1. Again budget balance holds as the resulting mechanism can be implemented

by a fixed price mechanism with price t = ch.

Therefore, y(vl, cl) = 1 = y(vh, ch) which implies that trade happens unless the cost signal is high

and the valuation signal is low. I will hold the mechanism, i.e. y, fixed for the remainder of the proof

and first focus on the buyer showing that vh = v̄ in the optimal information structure. By way of

contradiction suppose vh < v̄ and note that by corollary 2 this implies vl = v. As vh < v̄, some buyers

with true valuation v receive the signal vh. Consider now moving ε of these buyers to signal vl. Put

differently, the following information structures are feasible for small ε > 0:

ṽl(ε) = v ṽh(ε) =
ωh − ε− ω̄
ωh − ε

v +
ω̄

ωh − ε
v̄ ω̃h(ε) = ωh − ε ω̃l(ε) = 1− ωh + ε

where ω̄ is the share of v̄ in the true buyer type distribution. Note that the original information

structure is obtained for ε = 0. The budget balance condition in the binary case (with y fixed as

above) can be written as

γlṽl(ε) + (1− γl)ω̃h(ε)ṽh(ε)− ω̃h(ε)ch − γl(1− ω̃h(ε))cl ≥ 0.

The derivative of the left hand side of this budget balance condition with respect to ε is ch−v+γl(v−cl)
which is positive as ch ≥ v and v ≥ cl by lemmas 7 and 8. Clearly expected welfare is strictly increasing

in ε as well as the moved types with valuation v no longer trade inefficiently with high cost sellers.

This implies that expected welfare is strictly higher for ε > 0 while budget balance is not violated and

thereby optimality of the original information structure is contradicted. Hence, vh = v̄ has to hold in

the optimal information structure.

The proof for cl = c in the optimal information structure is analogous.

Proof of proposition 3: See appendix D below.

D. Derivations binary type distribution

By lemmas 7 and 9, y(vh, ch) = y(vl, cl) = y(vh, cl) = 1 while y(vl, ch) = 0 and vh = v̄ while cl = c. Let

ω̄ (γ) be the share of high (low) types in HB (HS). Then the optimization problem can be formulated
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in terms of the variables ωh ∈ [0, ω̄] and γl[0, γ] and

vl =
ω̄ − ωh
1− ωh

v̄ +
1− ω̄
1− ωh

v

ch =
γ − γl
1− γl

c+
1− γ
1− γl

c̄.

The budget balance constraint can be written as

BB(ωh, γl) = γl
ω̄ − ωh
1− ωh

v̄ + γl
1− ω̄
1− ωh

v + (1− γl)ωhv̄ − ωh
γ − γl
1− γl

c− ωh
1− γ
1− γl

c̄− γl(1− ωh)c ≥ 0.

The objective, expected welfare, equals

W (ωh, γl) = (ωhγ + (ω̄ − ωh)γl)(v̄ − c) + γl(1− ω̄)(v − c) + ωh(1− γ)(v̄ − c̄).

As W (ωh, γl) is strictly increasing in both variables, the budget balance constraint holds with

equality if and only if BB(ω̄, γ) < 0: If BB held with inequality, increasing either γl or ωh by a

sufficiently small amount would increase welfare without violating BB.

Note at this point that it is possible to normalize the problem as described in the main text: the

maximizing ωh and γl in the original problem equal the maximizing choices in the normalized problem

in which v̄normal = 1, vnormal = v/v̄, cnormal = c/v̄ and c̄normal = c̄/v̄. First/second best welfare in

the original problem equals first/second best welfare in the normalized problem times v̄. This is true

as W , W fb, and BB are linear in the types v̄, v, c̄ and c.

Solving the budget balance condition (holding with equality) for ωh yields14

ωBBh (γl) =
1

2

1 +
γl(v̄ − c)

1−γ
1−γl (c̄− c)− (1− γl)(v̄ − c)



−

√√√√√1

4

1 +
γl(v̄ − c)

1−γ
1−γl (c̄− c)− (1− γl)(v̄ − c)

2

− γlω̄(v̄ − v) + γl(v − c)
1−γ
1−γl (c̄− c)− (1− γl)(v̄ − c)

while solving the budget balance condition (holding with equality) for γl yields

γBBl (ωh) =
1

2

(
1 +

ωh(v̄ − c)
1−ω̄
1−ωh (v̄ − v)− (1− ωh)(v̄ − c)

)

−

√√√√1

4

(
1 +

ωh(v̄ − c)
1−ω̄
1−ωh (v̄ − v)− (1− ωh)(v̄ − c)

)2

−
ωh(v̄ − c̄) + ωhγ(c̄− c)

1−ω̄
1−ωh (v̄ − v)− (1− ωh)(v̄ − c)

.

ωBBh (γl) can be plugged into W in order to get a one-dimensional optimization problem over

γl ∈ [γBBl (ω̄), γ]. I numerically verified that the resulting objective function is convex in γl (under the

assumption that BB(ω̄, γ) < 0).15 Consequently the solution is either

• γl = γBBl (ω̄) and therefore ωh = ω̄ or

• γl = γ and therefore ωh = ωBBh (γ).

14The second solution of the quadratic equation is above 1 – as
γl(v̄−c)

1−γ
1−γl

(c̄−c)−(1−γl)(v̄−c)
> 1 by γl ≤ γ – and therefore

not relevant. Note that there always exists a solution in (0, 1) as the budget balance constraint is slack if ωh = 0.
15The code is available on the website of the author (https://schottmueller.github.io/).
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Put differently, one player receives a perfectly informative signal and the other player a noisy signal.

For concreteness, the relevant values γBBl (ω̄) and ωBBh (γ) are given explicitly:

γBBl (ω̄) =
1

2

(
1 +

ω̄(v̄ − c)
ω̄v̄ − v + (1− ω̄)c

)
−

√
1

4

(
1 +

ω̄(v̄ − c)
ω̄v̄ − v + (1− ω̄)c

)2

−
ω̄(v̄ − c̄) + ω̄γ(c̄− c)
ω̄v̄ − v + (1− ω̄)c

ωBBh (γ) =
1

2

(
1 +

γ(v̄ − c)
c̄− γc− (1− γ)v̄

)
−

√√√√1

4

(
1 +

γ(v̄ − c)
c̄− γc− (1− γ)v̄

)2

−
γω̄(v̄ − v) + γ(v − c)
c̄− γc− (1− γ)v̄

.

To determine which of the two solutions yields a higher welfare it is simplest to compare for both

the difference to first best welfare. As W (ω̄, γl) is linear in γl this difference can be expressed as

W (ω̄, γ)−W (ω̄, γBBl (ω̄)) = (1− ω̄)(v − c)γ − 1

2

(
1 +

ω̄(v̄ − c)
ω̄v̄ − v + (1− ω̄)c

)
+

√
1

4

(
1 +

ω̄(v̄ − c)
ω̄v̄ − v + (1− ω̄)c

)2

−
ω̄(v̄ − c̄) + ω̄γ(c̄− c)
ω̄v̄ − v + (1− ω̄)c



W (ω̄, γ)−W (ωBBh (γ), γ)) = (1− γ)(v̄ − c̄)ω̄ − 1

2

(
1 +

γ(v̄ − c)
c̄− γc− (1− γ)v̄

)
+

√√√√1

4

(
1 +

γ(v̄ − c)
c̄− γc− (1− γ)v̄

)2

−
γω̄(v̄ − v) + γ(v − c)
c̄− γc− (1− γ)v̄

 .

Consequently, γl = γBBl (ω̄) and therefore ωh = ω̄ in the optimal mechanism if and only if

(1− γ)(v̄ − c̄)
(1− ω̄)(v − c)

ω̄ − 1

2

(
1 +

γ(v̄ − c)
c̄− γc− (1− γ)v̄

)
+

√√√√1

4

(
1 +

γ(v̄ − c)
c̄− γc− (1− γ)v̄

)2

−
γω̄(v̄ − v) + γ(v − c)
c̄− γc− (1− γ)v̄


≥

γ − 1

2

(
1 +

ω̄(v̄ − c)
ω̄v̄ − v + (1− ω̄)c

)
+

√
1

4

(
1 +

ω̄(v̄ − c)
ω̄v̄ − v + (1− ω̄)c

)2

−
ω̄(v̄ − c̄) + ω̄γ(c̄− c)
ω̄v̄ − v + (1− ω̄)c


and γl = γ and therefore ωh = ωBBh (γ) otherwise.
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