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Abstract

We study welfare effects of public short-time compensation (STC) in a model

in which firms respond to idiosyncratic profitability shocks by adjusting employ-

ment and hours per worker. Introducing STC substantially improves welfare by

mitigating distortions caused by public UI, but only if firms have access to pri-

vate insurance. Otherwise firms respond to low profitability by combining layoffs

with long hours for remaining workers, rather than by taking up STC. Optimal

STC is substantially less generous than UI even when firms have access to private

insurance, and equally generous STC is worse than not offering STC at all.
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1 Introduction

Virtually all developed countries have public unemployment insurance (UI) systems. In

addition, many countries run public short-time compensation (STC) schemes, which pay

benefits to workers that have not lost their job entirely but are working reduced hours.

In contrast to UI, however, STC has historically not been a universal component of the

social insurance systems of developed countries. Before the 2008-2009 crisis, STC schemes

existed in 18 out of 33 OECD countries. Such schemes increased in popularity during

the crisis, with many countries expanding existing schemes and others introducing new

schemes on a temporary basis.1

This increase in the popularity of STC has also revived academic interest in this policy

instrument. Recent research has primarily focussed on employment effects of STC during

the crisis.2 What has received little attention, both in recent and earlier work, are effects

of STC on social welfare. This contrasts with UI, which has been studied extensively from

a welfare perspective. In this paper we study welfare effects of STC in a setting in which

UI is socially optimal, consistent with the observation that UI is a universal feature of

social insurance systems in developed countries. We ask if introducing STC can improve

welfare in a situation in which the instrument of UI is already used optimally.

We study this question in a static model of implicit contracts, building on existing

theoretical work on STC. Workers are risk averse and ex ante heterogeneous in that they

are either attached to a firm or unattached. Both attached and unattached workers can

be unemployed ex post. We follow existing work in not separating the role of workers

and employers: workers attached to a firm are both the suppliers of its labor input as

well as its owners. Firms are subject to idiosyncratic profitability shocks, and can adjust

through a combination of layoffs and work sharing in the sense of adjusting hours per

worker. Profitability shocks are interpreted as temporary, and layoffs are interpreted

as temporary layoffs that do not break attachment to the firm. The government has

access to two policy instruments, UI and STC. UI is modeled as a payment to each

unemployment worker, where a worker is considered unemployed if it works zero hours.3

1Arpaia et al. (2010) and Hijzen and Venn (2011) survey STC schemes.
2See for example Arpaia et al. (2010), Hijzen and Venn (2011), Boeri and Bruecker (2011), Cahuc

and Carcillo (2011), Hijzen and Martin (2013), and Balleer et al. (2014).
3Since the model is static, search activity is not modeled explicitly and thus does not enter the

definition of unemployment. Unattached workers are eligible for unemployment insurance payments in
the model. For this to be consistent with the typical UI system, the status of being unattached should
be interpreted as including having worked in the recent past.
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Thus workers are unemployed either because they are unattached or on temporary layoff.

UI is the only source of income for unattached workers. STC is modeled as a payment

for each hour by which working time is reduced below some threshold of normal hours.

We allow for the possibility that eligibility for STC may require a minimum reduction in

hours per worker, a common feature of existing STC schemes. The government balances

the budget through a linear tax on total hours. When studying public insurance, it is

important to take into account agents’ access to private insurance (PI). Here we consider

two polar scenarios: either firms have access to perfect PI, or they have no access to PI.

Welfare effects of UI in this setting are well understood. It has a positive effect on

utilitarian welfare via redistribution towards unattached workers. If firms lack access to

perfect PI, UI also provides insurance to attached workers. The cost of UI is a distortion

of labor inputs, as firms do not internalize the impact of layoffs on the government budget.

Starting from a situation in which the level of UI is chosen to maximize social welfare,

the introduction of STC can affect welfare through two channels. First, since private labor

input decisions are distorted by UI, STC affects welfare through its impact on these

decisions. This is the only welfare effect of STC when firms have access to perfect PI.

If firms lack such access, then STC also has a direct insurance effect, since it reallocates

resources across firms with different realizations of profitability.

Our analysis proceeds in two main steps. First, we analyze firms’ decisions for given

values of the policy instruments. In particular, we characterize how firms adjust labor

inputs in response to profitability shocks, conditional on the decision to take up STC. This

is well known for the case of perfect PI: when profitability is sufficiently low for layoffs to

be optimal, a further reduction in profitability causes lower employment, while hours per

worker remain constant. For the case of no PI and for our specification of preferences,

which is a standard specification in macroeconomics, we establish a new comparative

statics property: the availability of UI induces firms to respond to a decline in profitability

by reducing employment and increasing hours per worker. This occurs because lower

profitability raises the marginal utility of consumption relative to the marginal disutility

of working longer hours for workers with positive hours. This property turns out to be

the key factor in determining the welfare effects of STC when firms lack access to PI.

In the second step, we study welfare-maximizing choices of UI and STC. We rely on

computational experiments, calibrating the model by targeting features of the US labor

market. We obtain two main results. First, introducing STC substantially improves
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welfare, but only if firm have access to PI. If firms have such access, then STC can

mitigate labor input distortions in form of excessive temporary layoffs caused by UI.

This mechanism fails if firms lack access to PI, due to the comparative statics property

discussed above. In the absence of STC, unprofitable firms would choose temporary

layoffs combined with high hours per worker, and this makes adopting STC unappealing.

For the same reason, STC has a direct negative insurance effect, but quantitatively this

is relatively unimportant. Our second main result is that optimal STC is substantially

less generous than UI even when firms have access to PI. In our model there is no

reason to expect that equal generosity is optimal, since the optimal levels of STC and

UI are governed by different trade-offs. According to our computational experiments,

STC should be about one third as generous as UI. Furthermore, equally generous STC

is worse than not offering STC at all. This is important, given that equal generosity of

STC and UI is a common feature of existing schemes.4

We contribute both to the literature using implicit contract models to study STC,

and the broader literature using such models to study the response of layoffs and hours

per worker to shocks. Our analysis of STC builds heavily on Burdett and Wright (1989,

henceforth BW) and Wright and Hotchkiss (1988, henceforth WH). BW use an implicit

contract model to study effects of UI and STC on layoffs, hours per worker, and wages.

A key feature of their model is that laissez faire is socially optimal. Their analysis is

focussed on the distortions induced by UI and STC. They find that while UI distorts the

level of employment, STC distorts hours per worker. WH extend the analysis of BW in

several directions, two of which are important for our purposes. While BW consider a

model in which workers and employers are distinct agents, WH also consider a simplified

model which abstracts from this heterogeneity. We adopt this simplification. Second,

WH use this simplified model to analyze social welfare. As in BW, having neither UI

nor STC is socially optimal. Alternatively, UI and STC can be neutralized through full

experience rating. Our main contribution to this literature is an analysis of the welfare

effects of STC in a setting in which there is a reason for the existence of public UI.

This is an important setting to consider, given that UI is a universal across developed

economies. The existence of UI gives rise to a nontrivial trade-off for STC, since STC can

4More precisely, a common feature is that the replacement rates received by workers are often the
same across UI and STC. What matters in our model is the generosity of the program from the joint
perspective of workers and employers. Some programs have equal replacement rates for workers, but
impose additional costs of utilizing STC on employers, and thus are effectively less generous than UI.
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mitigate distortions induced by UI. In our model we generate a reason for the existence

of UI through the presence of unattached workers.5 But our results concerning STC may

also be relevant if the reason for the existence of UI is different, for example if socially

inefficient UI persists for political economy reasons.

Since the work of BW and WH on STC, there has been tremendous progress in the

development of dynamic models of the labor market. Nonetheless, we think that static

implicit contract models remain a natural starting point for studying the welfare effects of

STC. What has made this class of models attractive for analyzing STC is the combination

of three features: (i) specificity of employment relationships, captured by the attachment

of workers to firms, (ii) multi-worker firms, adjusting at both the extensive and the

intensive margin, (iii) private insurance arrangements among the agents attached to a

firm, in a setting with incomplete markets. While immense progress has been made in

developing dynamic models capturing these features individually, models capturing them

jointly have not yet been developed.6 Of course, the static nature of our model prevents

us from evaluating some potential effects of STC, such as the common concern that STC

reduces the reallocation of workers to more productive firms.7

Our contribution to the broader implicit contracts literature is the comparative statics

property discussed above, which applies when firms lack access to PI and public UI is

available: if profitability is sufficiently low for layoffs to be optimal, then a firm responds

to a further reduction in profitability by reducing employment and increasing hours per

worker. Rosen (1985) and FitzRoy and Hart (1985) study the corresponding comparative

statics for the case of perfect PI, and show that hours are constant across profitability

levels for which layoffs are optimal. The analysis closest to ours is Miyazaki and Neary

(1985), who study the comparative statics of employment of hours for a firm without

access to PI. They find that an increase in profitability can reduce both employment and

hours per worker if firms have to cover fixed costs that are independent of employment, or

5When firms lack access to perfect PI, an additional source of welfare gains from UI and potentially
STC in our model is insurance provision against idiosyncratic profitability shocks. In contrast, in both
BW and WH shocks are aggregate and thus undiversifiable, whether through public or private insurance.

6The paper that comes closest is Cooper, Haltiwanger, and Willis (2007), who construct a model
with search frictions with the aim of matching the comovement of labor market variables in the aggregate
and at the establishment level. Their model exhibits the first two features. It has two types of agents,
risk neutral employers and risk averse workers. To maintain tractability, they assume that employers
have all the bargaining power. In equilibrium all workers, whether employed or unemployed, obtain the
same level of utility. Workers have GHH preferences, ensuring marginal utilities of consumption are also
equalized. Thus it does not matter whether markets are complete or incomplete. They do not analyze
a version of their model in which employers are risk averse.

7See OECD (2010) for a discussion of this concern.
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if income effects are sufficiently strong. Our finding differs in that a change in profitability

induces an opposite response of employment and hours, and that this pattern is induced

by the presence of UI, which acts like a fixed cost per worker.

The remainder of the paper is organized as follows. We introduce the model in Section

2. In Section 3, we characterize the allocation for a given system of UI and STC. Section 4

contains the computational experiments. Section 5 considers an alternative specification

of technology, and Section 6 concludes.

2 Model

There is a continuum of firms. Each firm has a mass N of workers attached to it. We

normalize N = 1. The firm is jointly owned and operated by these workers. A fraction

υ of the total population of workers is not attached to a firm.

Technology. Each firm has the production function

xf(nh) (1)

where n denotes the mass of workers working strictly positive hours, and h denotes the

number of hours worked by each of these workers. Here x parametrizes the profitability

of the firm. The function f : [0,+∞) → [0,+∞) is twice continuously differentiable with

f ′ > 0 and f ′′ < 0 on (0,+∞), and satisfies the Inada conditions liml→0 f
′(l) = +∞

and liml→∞ f ′(l) = 0. Profitability x is subject to stochastic shocks that can be of

technological or other origin, with probability density p(x) and support (0,+∞).

Hours per worker and employment enter equation (1) multiplicatively. Thus hours of

different workers are perfect substitutes. This specification is used by WH, and dubbed

the standard case by BW. BW also study a more general specification with imperfect

substitutability. We maintain the standard case for most of our analysis. In Section 5

we consider the case in which hours of different workers are perfect complements.

Preferences. The utility function of a worker is

E [u(c, h)]
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where c denotes consumption and h denotes hours worked. The function u takes the form

proposed by King, Plosser, and Rebelo (1988, KPR):

u(c, h) =
[cv(h)]1−σ − 1

1− σ
(2)

with σ > 1. The function v : [0, hmax) → (0, 1] satisfies v(0) = 1. Here hmax ∈ (0,+∞]

is a physical upper limit on hours. The function v incorporates a fixed utility loss from

working strictly positive hours: limh→0 v(h) = v0 with v0 ∈ (0, 1). The function v is

twice continuously differentiable and satisfies v′ < 0 on (0, hmax). We assume that −v′

v

is strictly increasing on (0, hmax) to ensure that consumption is a normal good. Let

V (h) ≡ −v(h) 1−2σ
σ v′(h). We assume V ′(h) > 0 to ensure that u(c, h) is strictly concave,

and we impose the Inada condition limh→hmax V (h) = +∞.

Our specification is more general than BW in that we allow for a fixed utility loss

from working strictly positive hours. It is less general than BW in that the KPR func-

tional form restricts the relative strength of income and substitution effects. The KPR

functional form is standard in macroeconomic models, since it is necessary for balanced

growth. We see this paper as a step towards incorporating STC in a dynamic macroeco-

nomic model, making this functional form a natural choice.

Private Insurance. We consider two polar cases, parametrized by χ ∈ {0, 1}. If χ = 0,

then firms have access to perfect PI. If χ = 1, then firms have no access to PI. We assume

perfect risk sharing within firms.

Policy Instruments. UI takes the form of a payment gUI > 0 to workers with zero

hours worked. STC takes the form of a payment gSTC ≥ 0 to employed workers for every

hour that hours worked fall short of some normal level h̄. We impose the restriction

h̄gSTC ≤ gUI , so the maximal amount of STC, obtained by working marginally positive

hours, cannot exceed the level of UI. The normal level of hours is taken as given by firms.

In equilibrium, it is given by the average level of hours. Most countries with STC schemes

require a minimum hours reduction (MHR). To capture this feature, firms are eligible for

STC if hours are below gMHRh̄, where gMHR ≤ 1. The government balances the budget

through a proportional tax τ > 0 on total hours nh. Thus a firm with employment n
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and hours h receives the net subsidy

(1− n)gUI + nI
[
h ≤ gMHRh̄

]
·
(
h̄− h

)
· gSTC − τnh (3)

where I denotes the indicator function. Unattached workers have no opportunity to work

positive hours, thus receive the unemployment benefit gUI . Notice that this system of UI

and STC is uniform: it does not differentially treat workers based on the profitability of

their firm, nor does it distinguish between attached and unattached workers. We do not

model the reasons why the government does not use differential benefits.

This specification of policy is based on BW and WH, and generalizes theirs in three

directions. First, they restrict attention to the case in which the normal level of hours

h̄ coincides with the physical upper limit hmax. This implies that in their model firms

always receive STC. This allows them to ignore the decision of firms whether to take up

STC. We allow h̄ and hmax to differ. To pin down h̄ we require that in equilibrium it is

equal to the average level of hours across states of the world. This is as close as we can

come to capturing the notion of normal hours in a static setting.

Second, BW restrict attention to two regimes: an American regime with gSTC = 0,

and a European regime in which UI and STC are equally generous, that is, h̄gSTC = gUI .

We allow any value of gSTC between 0 and h̄gSTC . While many countries have equal

replacement rates for UI and STC, in some countries STC is effectively less generous.

For example, in Germany firms are required to pay social security contributions for STC

hours. In our computational experiments it turns out that equal generosity is not optimal.

Third, in their specification firms receive STC whenever hours are below the normal

level h̄ which, as discussed above, coincides with the physical upper limit hmax in their

model. We introduce the parameter gMHR to investigate whether a minimum hours

reduction is a desirable feature of STC schemes.

BW assume that the government balances the budget through a lump sum tax. In

their setup without a relevant eligibility threshold, a lump sum tax is isomorphic to our

specification with a proportional tax on total hours.8 This is no longer true in our setup

with an eligibility threshold. Given this, we prefer the specification with a proportional

8Without the eligibility threshold, net subsidy schedule (3) reduces to (1−n)gUI+n(h̄−h)·gSTC−τnh.
A system with unemployment benefit ĝUI and short-time compensation ĝSTC financed through a lump
sum tax τ̂ has the net subsidy schedule (1 − n)ĝUI + n(h̄ − h) · ĝSTC − τ̂ . The isomorphism is defined
by setting ĝUI = gUI + h̄τ , ĝSTC = gSTC + τ , and τ̂ = h̄τ .
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tax, since it mimics more closely the observed financing of UI through payroll taxes.9

Our specification does not include so-called experience rating, which requires that

a firm reimburses the government for part of the UI and STC benefits received by its

workers. Exactly as in the models of BW and WH, experience rating is redundant in our

model: in Appendix C we show that a system with experience rating is equivalent to a

system without experience rating and lower benefits. Thus we can omit experience rating

without loss of generality. When mapping the model to the data, gUI and gSTC should be

interpreted as subsidies net of any experience rating. Furthermore, the restriction that

UI and STC are uniform should be understood as a restriction on net subsidies.10

Firm Optimization Problem. Let T (x) ∈ {0, 1} indicate the decision of the firm to

take up STC in state x. Let ι(x) denote the net-transfer received from PI in state x. The

firm chooses cw(x), cb(x), n(x), h(x), ι(x), and T (x) for all x ∈ (0,+∞) to maximize∫ ∞

0

{n(x)u(cw(x), h(x)) + (1− n(x))u(cb(x), 0)} p(x)dx (4)

subject to

n(x)cw(x) + (1− n(x))cb(x) = xf(n(x)h(x)) + ι(x)− τn(x)h(x) (BC)

+(1− n(x))gUI + n(x)
(
h̄− h(x)

)
T (x)gSTC ,

n(x) ≤ 1, (N)

T (x) ·
(
h(x)− gMHRh̄

)
≤ 0, (MHR)

χι(x) = 0 (NI)

for all x ∈ (0,+∞) and ∫ ∞

0

ι(x)p(x)dx = 0. (PI)

Constraint (PI) requires that PI is actuarially fair. If χ = 1, then (NI) enforces that the

firm has no access to PI by requiring ι(x) = 0 in every state.

9Of course a payroll tax would be based on wages. Thus it would not only depend on total hours,
but also on profitability. Here we exclude policy instruments that condition of profitability.

10If only gross benefits are restricted to be uniform, and if experience rating is allowed to differentiate
between workers based on profitability or attached status, then the restriction has no content, since any
desired differentiation can be implemented through experience rating.
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Government Optimization Problem. We collect the policy instruments in a vector

g =
{
gUI , gSTC , gMHR, h̄, τ

}
. We restrict the government to choose g from a set G. By

varying G, we can restrict the set of policy instruments available to the government. In our

computational experiments, we consider a sequence of expanding sets G, to examine the

added value of introducing the policy instrument STC with and without minimum hours

requirements. The objective function of the government is utilitarian welfare, giving

weight υ to unattached workers.11 Let U(g) denote the maximized value of the firm

optimization problem as a function of the policy vector, and let cw(x, g), cb(x, g), n(x, g),

h(x, g), ι(x, g), and T (x, g) denote corresponding maximizers. Given these functions, the

optimization problem of the government is to choose g ∈ G to maximize

(1− υ)U(g) + υu (gUI , 0) (5)

subject to the government budget constraint∫ ∞

0

{
(1− n(x, g))gUI + n(x, g)

(
h̄− h(x, g)

)
T (x, g)gSTC

− τn(x, g)h(x, g)
}
p(x)dx = 0

(6)

and the constraint that normal hours coincide with average hours per worker

h̄ =

∫∞
0
n(x, g)h(x, g)p(x)dx∫∞
0
n(x, g)p(x)dx

. (7)

First-Best Optimization Problem. A useful reference point for the allocations cho-

sen by the government is the first-best allocation. It is obtained by choosing cw(x), cb(x),

n(x), h(x), and unattached workers’ consumption cν to maximize utilitarian welfare

(1− ν)

∫ ∞

0

{n(x)u(cw(x), h(x)) + (1− n(x))u(cb(x), 0)} p(x)dx+ νu(cν , 0)

subject to the resource constraint

(1− ν)

∫ ∞

0

{n(x)cw(x) + (1− n(x))cb(x)− xf(n(x)h(x))} p(x)dx+ νcν = 0

and constraint (N).

11One can also interpret attachment as an initial uninsurable shock. In this interpretation all workers
are ex ante identical, and the government simply maximizes expected utility.
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When firms have access to perfect PI, the only reason why the government cannot

achieve the first-best is that attached workers on layoff are not excluded from UI. If

firms do not have access to PI, then an additional reason is that the government’s policy

instruments do not enable it to condition transfers directly on profitability x.

3 Optimal Firm Behavior

In this section we analyze the firm optimization problem, proceeding in three steps. In

Section 3.1 we derive first-order conditions and obtain comparative statics properties of

optimal hours. In Section 3.2, we analyze how optimal labor inputs vary with profitability

conditional on the decision to take up STC. That is, we fix the take-up decision, and study

optimal labor input profiles separately for the cases of take-up and no take-up of STC.

In Section 3.3 we combine these results to discuss the take-up decision.

3.1 First-Order Conditions

Let λ(x)p(x), ν(x)p(x), ζ(x)p(x), ρ(x)p(x), and µ denote the multipliers associated with

constraints (BC), (N), (MHR), (NI), and (PI), respectively. The first-order conditions

for cw(x), cb(x), n(x), h(x), and ι(x) are

uc(cw(x), h(x)) = λ(x), (8)

uc(cb(x), 0) = λ(x), (9)

u(cb(x), 0)− u(cw(x), h(x)) = λ(x)
[
xf ′(n(x)h(x))h(x)− cw(x) + cb(x) (10)

− gUI +
(
h̄− h(x)

)
T (x)gSTC − τh(x)

]
− ν(x),

−n(x)uh(cw(x), h(x)) = λ(x)
[
xf ′(n(x)h(x))n(x) (11)

− n(x)T (x)gSTC − τn(x)
]
− T (x)ζ(x),

λ(x) = µ+ ρ(x)χ. (12)

Conditions (8)–(9) imply that consumption levels of employed and unemployed work-

ers are cw(x) = c∗w(λ(x), h(x)) and cb(x) = c∗b(λ(x)), respectively, with c∗w(λ, h) ≡
λ−1/σv(h)(1−σ)/σ and c∗b(λ) ≡ λ−1/σ.

Next, we analyze the first-order conditions that determine the optimal level of hours

per worker. We first consider the case in which the employment constraint (N) is slack,
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and then turn to the case in which it binds. In both cases we focus on the case in which

constraint (MHR) is slack, since its impact on optimal hours is straightforward. If the

constraints (N) and (MHR) are slack, that is, if ν(x) = 0 and ζ(x) = 0, then combining

first-order conditions (10) and (11) yields

u(cb(x), 0)− u(cw(x), h(x)) + uh(cw(x), h(x))h(x)

= λ(x)
[
cb(x)− cw(x)− gUI + h̄ · T (x)gSTC

]
.

(13)

This is the first-order condition for a variation that reduces employment while increasing

hours per worker h to keep total hours nh constant. The left-hand side gives the utility

gain from this variation. Each worker now has a larger chance of being on layoff, which

yields the utility gain u(cb(x), 0) − u(cw(x), h(x)). To keep total hours constant, the

additional layoff must be compensated by redistributing h(x) hours across the remaining

employees, which yields a utility loss of −uh(cw(x), h(x))h(x). The right-hand side gives

the impact of this variation on the budget constraint. The additional worker on layoff is

switched from consumption cw(x) to consumption cb(x) and collects the UI benefit gUI .

The firm loses (h̄− h(x)) · T (x)gSTC in STC for the worker on layoff, and and additional

h(x) · T (x)gSTC due to higher hours for remaining workers, for a total of h̄ · T (x)gSTC .
Substituting the functions c∗w and c∗b , we obtain a condition linking hours and the

multiplier λ which does not directly involve profitability x:

u(c∗b(λ), 0)− u(c∗w(λ, h), h) + uh(c
∗
w(λ, h), h)h

+λ
[
c∗w(λ, h)− c∗b(λ) + gUI − h̄T · gSTC

]
= 0.

(14)

The following proposition establishes that this equation has a unique solution for hours,

and characterizes the comparative statics of hours with respect to λ and T .

Proposition 1 Equation (14) has a unique solution for h given any λ > 0 and T ∈
{0, 1}. If gSTC > 0, then this solution is strictly decreasing in T . If gUI − h̄T · gSTC > 0,

then it is strictly increasing in λ. If gUI − h̄T · gSTC = 0, then it is independent of λ.

Hours are decreasing in T if gSTC > 0, since gSTC subsidizes low hours. The relationship

between the multiplier λ and hours is less obvious. In the absence of a net payment from

the government (gUI − h̄T · gSTC = 0), hours are determined by the trade-off between the

fixed disutility of working positive hours and the increasing marginal disutility of working

long hours. Higher fixed costs favor longer hours, while convex disutility favors spreading

12



hours across many workers. With KPR utility, the optimal level of hours determined by

this trade-off is not affected by the multiplier λ. UI benefits introduce an additional fixed

cost of working positive hours, incurred in terms of the consumption good. A higher

multiplier λ indicates that consumption is more valuable. This shifts the trade-off in

favor of higher hours. Thus UI distorts the composition of labor inputs in the direction

of higher hours and lower employment. If taken up, STC counteracts this distortion and

eliminates it entirely if UI and STC are equally generous, that is, if h̄gSTC = gUI .

The property that hours are strictly increasing in λ if gUI − h̄T · gSTC > 0 and

independent of λ if gUI − h̄T · gSTC = 0 also holds for other common specifications of

utility. In particular, it also holds when utility is additively separable in consumption and

hours. With GHH preferences, hours are independent of λ even if gUI − h̄T · gSTC > 0.12

The key implication of equation (14) is that profitability x does not enter this trade-off

directly. Hours are affected by profitability only through the multiplier λ(x), which is the

marginal utility of consumption. With perfect PI, λ(x) does not vary with profitability,

hence hours are constant. As we discuss below, without PI λ(x) is decreasing in x, hence

hours are declining in x. Thus firms experiencing an uninsured decline in profitability

and engaging in layoffs have relatively high hours for those workers that remain at work.

Next, consider the case in which the employment constraint is binding. Substituting

n(x) = 1 along with the function c∗w into first-order condition (11) yields

−uh(c∗w(λ, h), h) = λ [xf ′(h)− τ − T · gSTC ] .

Substituting the functional forms of uh and c∗w yields

V (h) = λ
1
σ [xf ′(h)− τ − T · gSTC ] . (15)

The following proposition establishes that this equation has a unique solution for hours,

and characterizes the comparative statics of hours with respect to x, λ, and T .

Proposition 2 Equation (15) has a unique solution for h given any x > 0 and T ∈
{0, 1}. This solution is strictly increasing in x and λ, and converges to hmax as x converges

to infinity. If gSTC > 0, then it is strictly decreasing in T .

UI does not directly affect the choice of hours when the firm does not engage in layoffs.

12These claims are established at the end of the proof of Proposition 1.
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3.2 Labor Input Profiles Conditional on STC Take-Up

In this section we analyze how optimal labor inputs vary with profitability conditional

on STC take-up, separately for the cases of perfect PI and no PI. Let h0(x) and n0(x)

denote the levels of hours and employment that would be optimal if STC is not taken

up. Here the superscript indicates that T = 0. Analogously, let h1(x) and n1(x) denote

the corresponding levels if STC is taken up, that is, if T = 1.

3.2.1 Perfect Private Insurance

Proposition 3 If χ = 0, then the functions h0(x), n0(x), h1(x), and n1(x) are continu-

ous and have the following properties.

1. There exists a threshold x0N ∈ (0,+∞) such that h0(x) is constant on (0, x0N) and

strictly increasing on (x0N ,+∞), while n0(x) is strictly increasing on (0, x0N) and

equal to one on (x0N ,+∞).

2. There exist thresholds x1N ∈ (0,+∞) and x1MHR ∈ [xN1 ,+∞] such that h1(x) is

constant on (0, x1N), strictly increasing on (x1N , x
1
MHR), and constant at gMHRh̄

on (x1MHR,+∞), while n1(x) is strictly increasing on (0, x1N) and equal to one on(
xN1 ,+∞

)
.

3. If gSTC > 0, then h1(x) < h0(x) for all x ∈ (0,+∞).

This proposition is illustrated in Panels (a) and (b) of Figure 1. Part 1 characterizes

h0(x) and n0(x). There are two profitability regions across which the qualitative behavior

of labor inputs differs, divided by a threshold x0N at which the employment constraint

becomes binding. Below this threshold the firm engages in layoffs, and hours per workers

are constant. The latter follows directly from Proposition 1, which states that hours do

not vary with profitability x conditional on the multiplier λ(x). Perfect PI implies that

λ(x) is independent of x, hence hours are constant. Employment is strictly increasing

over this region. Above x0N the behavior of hours is governed by Proposition 2. Hours

are now strictly increasing in profitability as it is no longer possible to take advantage of

higher profitability by raising employment. This characterization of labor input profiles

in the case of perfect PI is well-known, and can be found in Rosen (1985), FitzRoy and

Hart (1985), and Burdett and Wright (1989), among others.
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Figure 1: Labor Input Profiles and STC Take-Up with Perfect PI
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Part 2 of the proposition describes h1(x) and n1(x). Again there is a threshold xN1 at

which the employment constraint becomes binding, and the qualitative behavior of labor

inputs above and below this threshold is very similar to the case of no take-up. The

only difference stems from the MHR constraint. Above xN1 , hours are strictly increasing

in profitability until the MHR constraint is binding. It is also possible that the MHR

constraint is already binding below xN1 , in which case hours do not vary with profitability

over the entire profitability range (0,+∞).

Part 3 of the proposition shows that hours under take-up are always below hours

under under no take-up. In essence, this follows directly from the comparative statics for

hours with respect to take-up T established in Propositions 1 and 2.13 Notice that Part 3

is silent on the relative position of the employment schedules n0(x) and n1(x). First-order

condition (10) shows that taking up STC provides an employment subsidy of (h̄−h)gSTC
per worker, which by itself increase optimal employment. However, the reduction in hours

induced by taking up STC reduces the marginal product from employing an additional

worker. Thus the total effect of take-up on employment is ambiguous.14 This implies that

the relative position of the thresholds xN0 and xN1 is also ambiguous. In our computational

experiments the case n1(x) < n0(x) always prevails, and in this case xN1 < xN0 . This is

the case illustrated in Panel (b) of Figure 1.

3.2.2 No Private Insurance

Proposition 4 If χ = 1, then the functions h0(x), n0(x), h1(x), and n1(x) are continu-

ous and have the following properties.

1. There exists a threshold x0N ∈ [0,+∞] such that h0(x) is strictly decreasing on

(0, x0N) and strictly increasing on (x0N ,+∞), while n0(x) is strictly increasing on

(0, x0N) and equal to one on (x0N ,+∞).

2. There exist thresholds x1N ∈ [0,+∞], x1MHR,L ∈ [0, xN1 ], and x
1
MHR,H ∈ [xN1 ,+∞]

such that h1(x) is constant at gMHRh̄ on
(
0, x1MHR,L

)
, weakly decreasing on

(
x1MHR,L,

x1N
)
, strictly increasing on

(
x1N , x

1
MHR,H

)
, and constant at gMHRh̄ on (x1MHR,H ,

+∞). It is strictly decreasing on
(
x1MHR,L, x

1
N

)
if gUI − h̄gSTC > 0. Employment

n1(x) is strictly increasing on (0, x1N) and equal to one on
(
xN1 ,+∞

)
.

13Proposition 1 immediately implies this result for levels of profitability below min[xN0 , x
N
1 ], and

Proposition 2 does so for the region above max[xN0 , x
N
1 ]. The only extra work in the proof of Part 3 of

Proposition 3 is to show that this result also holds between xN0 and xN1 .
14Van Audenrode (1994, p. 84) notes this ambiguity in a similar model.
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Figure 2: Labor Input Profiles and STC Take-Up without PI
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3. If gSTC > 0, then h1(x) < h0(x) for all x ∈ (0,+∞).

This proposition is illustrated in Panels (a) and (b) of Figure 2. Employment schedules

behave qualitatively as in the case of perfect PI. In contrast, the behavior of hours is

qualitatively different. Consider first the case of no take up. The profile h0(x) is strictly

decreasing in profitability below the threshold xN0 . This is explained by Proposition 1,

according to which hours are strictly increasing in the multiplier λ if gUI − h̄T ·gSTC > 0,

which holds if STC is not taken up. The multiplier λ coincides with marginal utility of

consumption. In the absence of PI it is strictly decreasing in profitability.15 This carries

over to hours. As explained in the discussion of Proposition 1, the multiplier affects

optimal hours through its interaction which the UI benefit, which acts like a fixed cost of

employment in terms of the consumption good. Consumption is scarce after an uninsured

decline in profitability. The optimal response of the firm is to send more workers to collect

UI benefits, which is one way of obtaining consumption, and to implement longer hours

for workers that remain on the job.16 This comparative statics result is new to the

implicit contracts literature. In Section 4 we show that it has important implications for

the welfare effects of STC.

Above the full-employment threshold x0N , hours are strictly increasing in profitability.

Qualitatively, this is as in the case of perfect PI. But the economic forces underlying this

result are somewhat different. With perfect PI, the increase in hours is purely driven by

a substitution effect, thus our assumption of KPR preferences is not important for this

result. In contrast, here the marginal utility of consumption is decreasing in profitability,

hence the response of hours depends on the relative strength of the income effect and the

substitution effect. KPR preferences imply that these effects would cancel exactly in the

absence of policy, that is, if τ = 0. The presence of a positive tax τ makes the income

effect relatively weaker. Thus hours remain strictly increasing in profitability.

The hours profile conditional on take-up of STC h1(x) is qualitatively similar to

h0(x). As in the case of perfect PI, its shape only differs due to the MHR constraint.

However, the hours profile would be V -shaped in the absence of the MHR constraint.

This implies that in general there are two profitability intervals over which the MHR

constraint binds. First, below a threshold x1MHR,L, which lies in the profitability range

15This is established in the course of the proof of Proposition 4.
16Notice that we have assumed that all fixed costs of employment accrue in terms of utility, so that UI

is the only fixed cost in terms of consumption. If other fixed costs also accrue in terms of consumption,
then this strengthens the result.
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with a slack employment constraint. Second, above a threshold x1MHR,H , which lies in

the profitability range over which the employment constraint binds.

Part 3 of the proposition establishes that, as in the case of perfect PI, hours under

take-up are always below hours under no take-up.

3.3 STC Take-Up

Having analyzed labor input profiles conditional on take-up, we now discuss optimal take-

up. Consider first the case of perfect PI. The next proposition gives sufficient conditions

such that take-up is monotone in profitability, occurring at low levels of productivity.

Proposition 5 Suppose that χ = 0 and gSTC > 0. If f(nh) = (nh)α for some α ∈ (0, 1),

and if x1N < x0N , then there exists a threshold xT ∈ [0,+∞] such that the take-up function

T ∗(x) =

{
1 for x ∈ (0, xT ]

0 for x ∈ (xT ,∞ )

is optimal.

The first condition is that the technology is Cobb-Douglas, which is the functional form we

employ in our computational experiments. The second condition is that the employment

constraint starts to bind at a lower level of productivity in the case of take-up, that is,

x1N < xN0 . As discussed in the context of Proposition 3, the case xN1 < xN0 prevails in all

our computational experiments, although the reverse is a theoretical possibility.

The monotonicity of optimal take-up in Proposition 5 is driven by the complemen-

tarity between total hours nT (x)hT (x) and profitability. Adopting STC is associated

with a reduction in hours. Everything else equal, this leads to lower total hours. This

can be countered by an increase in employment, but only if the employment constraint is

slack. Once profitability is sufficiently high, firms adopting STC run into the employment

constraint. This makes adopting STC more costly, the more so the higher is profitability.

The take-up threshold xT can lie anywhere in [0,+∞]. Panels (c) and (d) of Figure

1 illustrate the optimal labor input profiles for the case in which xT lies between the

two employment thresholds x1N and x0N . They are generated from Panels (a) and (b)

by selecting the take-up schedules h1(x) and n1(x) to the left of xT , and the no take-up

schedules h0(x) and n0(x) to the right of xT . As profitability increases, hours are first flat

while employment is increasing. Hours start to increase as the employment constraint
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becomes binding under take-up at xN1 . Next, hours jump up and employment jumps

down as the take-up threshold xT is reached. After that, hours are once again flat while

employment is increasing until the employment constraint becomes binding under no

take-up at xN0 . Beyond this point, hours are once again increasing.

Next, consider the case of no PI. Here we do not have any theoretical results concerning

take-up, as the analysis is substantially complicated by the income effects that arise in

this case. As in the case of perfect PI, one economic force that remains at work is that

adopting STC is more costly if it would be optimal to choose high hours in the absence

of STC. In the case of perfect PI, this gave rise to the following property: take-up is

monotone in the hours that the firm would choose conditional on no-take up. Since the

latter are monotone in profitability, so is take-up. For the sake of illustration, suppose that

this force remains dominant in shaping take-up in the case of no PI. The key difference

to the case of perfect PI is that hours are not monotone in profitability, but V -shaped.

Given this, one would expect no take-up to occur in two separate regions of profitability,

both at very low levels of profitability and at very high levels of profitability. Panels (c)

and (d) of Figure 2 illustrate such a case with two take-up thresholds, denoted xT,L and

xT,H . The lower take-up threshold xT,L is located in the profitability region over which

hours conditional on the take-up are strictly declining in profitability, both for T = 1 and

T = 0. In the case illustrated here, the second take-up threshold is located between x1N

and x0N , when hours are still strictly decreasing in profitability conditional on no take-up,

but are already strictly increasing in profitability conditional on take-up due to a binding

employment constraint. The labor input schedules in Panels (c) and (d) are generated

from Panels (a) and (b) by selecting the no-take schedules h0(x) and n0(x) to the left and

to the right of xT,L and xT,H , respectively, and the take-up schedules h1(x) and n1(x) in

between. Hours jump down and employment jumps up at xT,L, the reverse happens at

xT,H .

4 Computational Experiments

In this section we carry out computational experiments to examine whether introducing

STC can improve on a system restricted to UI in our model. We obtain two main results.

First, the ability of STC to improve on UI critically depends on firms’ access to PI.

STC substantially improves welfare if firms have access to perfect PI, but yields only a

20



negligible improvement when firms lack access to PI. Under perfect PI, STC improves

welfare by mitigating labor input distortions induced by UI. This mechanism is greatly

diminished if firms lack access to insurance, because the most distressed firms prefer

long hours over taking up STC. Second, we find that even with perfect PI, the optimal

generosity of STC is substantially below that of UI, and that introducing STC with equal

generosity results in a large welfare loss in comparison to having no STC at all.

4.1 Calibration

We calibrate the model to match features of the US labor market. The functional form

of the production function is

f(nh) = (nh)α.

We set α = 2
3
, implicitly assuming that capital cannot be adjusted in response to prof-

itability shocks. For the utility function given in equation (2) above, we specify

v(h) = exp

(
−η h

1+ψ

1 + ψ
+ log (v0) I [h > 0]

)
,

where η and ψ are strictly positive. The parameter η only affects the level of hours, so we

can use it to normalize employment-weighted average hours to one. We set the coefficient

of relative risk aversion to σ = 2, within the “plausible” range 1–5 indicated by micro

estimates, see Heathcote, Storesletten, and Violante (2009). The parameter ψ governs

the Frisch elasticity of labor supply. Based on the recent survey of the microeconomic

evidence in Hall (2009), we target a Frisch elasticity of 0.7.17 We set υ = 0.045, so that

4.5% of workers are not attached to a firm. Together with the level of temporary layoffs

targeted below, this matches the average unemployment rate in the US of about 6%.

The density p(x) is log-normal. We normalize the mean of log(x) to zero. As the

standard deviation of log(x) we choose σx = 0.1, which is a reasonable order of magnitude

for firm-level idiosyncratic shocks for a time horizon between six month and one year, see

for example Comin and Philippon (2006) and Davis et al. (2007).

We calibrate an economy that has UI but no STC. Thus two parameters remain to

be calibrated: the parameter v0 that governs the fixed utility loss from working strictly

positive hours, and the UI benefit gUI . They are jointly calibrated to match two targets.

17The Frisch elasticity is
(
ψ + σ−1

σ

(
ηh1+ψ

))−1
. At average hours, this reduces to

(
ψ + σ−1

σ η
)−1

.
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First, we target that 1.5% of all workers are unemployed while attached to a firm. Thus

25% of all the unemployed are attached. We choose this target based on the empirical

prevalence of temporary layoffs, defined as unemployment in spells that end with being

rehired by the previous employer. In the US Current Population Survey, on average

14% of the unemployed are classified as on temporary layoff.18 Based on the Survey

of Income and Program Participation, Fujita and Moscarini (2012) report that a group

of unemployed workers of about equal size is not classified as on temporary layoff, but

ultimately returns to the previous employer.19 Second, we target that the replacement

rate of UI is 25%, where we define the replacement rate in the model as gUI divided by

the average consumption of workers. Recall that experience rating is neutral in our model

and gUI corresponds to the UI subsidy net of experience rating. Topel (1983) reports

that on average the net subsidy is 31% of earnings. In our model workers jointly own

and operate firms, hence implicitly their average consumption reflects income from both

wages and profits. This leads us to adopt the somewhat lower target of 25%.

These targets pin down gUI and v0 as follows. Both gUI and v0 act as as fixed cost

of working positive hours. The fraction of workers on temporary layoff is increasing in

fixed costs, so the corresponding target pins down v0 for given gUI . We then vary gUI to

match the target for the replacement rate.

The calibration for both cases, perfect PI and no PI, is summarized in Table 1. The

policy parameter gUI is pinned down quite directly by the replacement rate target. Only

the utility fixed cost v0 differs substantially between the two calibrations. With perfect

PI it is equal to 0.934, which corresponds to 6.63% in terms of consumption and 9.76%

in terms of hours.20 Its value is higher in the case of no PI, corresponding to 11% in

terms of consumption. Lack of insurance makes firms more reluctant to carry out layoffs,

thus the fixed cost must be higher to match the targeted level of temporary layoffs. In

Appendix B we show that the main results obtained in the remainder of this section are

insensitive to changes in parameter and targets over a wide range of values.

We use the calibrated model to carry out the following sequence of policy experiments,

18The average is taken over the years 1967-2012.
19Compared with other countries for which evidence is available, the incidence of temporary layoffs

in the US is about average. In a survey of the available evidence, OECD (2002) reports that temporary
layoffs account for almost 40% of unemployment in Canada, 20% of unemployment in Austria and
Denmark, and fractions closer to 10% in other European countries such as Germany, Norway and Sweden.

20The cost associated with v0 is expressed in terms of consumption (hours) by considering a compen-
sating proportional decrease in consumption (increase in hours) that leaves workers with v0 = 0 as well
off as under the calibrated value.
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Table 1: Calibration: Perfect PI and No PI

Value Perfect PI No PI Target

σ 2 2

α 0.67 0.67

σx 0.1 0.1

ψ 1.1 1.1 Frisch elasticity 0.7

η 0.664 0.667 h = 1 (Normalization)

υ 0.045 0.045 Unattached workers 0.045

v0 (% c) (% h) 0.934 (6.6)(9.8) 0.89 (11)(16) Temporary layoffs 0.015

gUI 0.247 0.247 Replacement rate 25

summarized in Table 2. Each experiment is defined by restrictions on the set of policy

instruments G in the government optimization problem of Section 2. First, we restrict

the set of policy instruments to UI and determine the welfare-maximizing level of gUI .

We denote this level as g∗UI , and also use g∗UI to label this experiment. We use g∗UI rather

than the calibrated level of gUI as the starting point for experiments that introduce STC.

Otherwise welfare gains from STC could merely reflect a suboptimal level of gUI , rather

than a genuine added value of gSTC as a policy instrument. The next three experiments

introduce short-time compensation, but without a minimum hours requirement, hence

gMHR = 1. In the first, we determine the optimal level of gSTC holding constant gUI

at g∗UI . By construction, introducing gSTC in this way does not affect the level of con-

sumption of unattached workers. Therefore, to the extent that STC does improve the

allocation, it can only do so by mitigating the distortion of labor inputs induced by UI.

We refer to the corresponding level of STC and also the entire experiment as g∗STC |g∗UI to
indicate that g∗STC is optimal conditional on fixing the level of UI at g∗UI . In the second

experiment, we introduce a level of gSTC that is as generous as g∗UI . This level satisfies

gSTC h̄ = g∗UI , and the corresponding experiment is labeled gmax
STC |g∗UI . In the next step,

we determine the welfare-maximizing combination of gSTC and gUI denoting this exper-

iment as (gUI , gSTC)
∗. The next two experiments introduce an MHR by allowing gMHR

do differ from one. First, in the experiment (gSTC , gMHR)
∗|g∗UI we once again fix the level

of UI at g∗UI while jointly choosing gSTC and gMHR optimally. Finally, in the experiment

(gUI , gSTC , gMHR)
∗ we choose all three policy instruments optimally.
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Table 2: Policy Experiments

Policy Experiment Restrictions on the Set of Policy Instruments G Remarks

g∗UI gSTC = 0, gMHR = 1

g∗STC |g∗UI gUI = g∗UI , gMHR = 1

gmaxSTC |g∗UI gUI = g∗UI , gSTCh = g∗UI , gMHR = 1 Perfect PI only

(gUI , gSTC)
∗ gMHR = 1

(gSTC , gMHR)
∗ |g∗UI gUI = g∗UI

(gUI , gSTC , gMHR)
∗ None

gSTC |g∗UI
gUI = g∗UI , gSTCh/gUI takes same value as in

No PI only
experiment g∗STC |g∗UI under perfect PI, gMHR = 1

4.2 Perfect Private Insurance

Results for the case of perfect PI are displayed in Table 3. The calibration and the first

best are shown as points of reference.21 For each experiment, the first six rows show

the values of the policy instruments gUI , gSTC and gMHR, and the budget clearing tax τ ,

along with the replacement rates implied by the values of gUI and gSTC , labeled REPRUI

and REPRSTC , respectively.
22 The next row reports the take-up rate for STC, that is,

the average fraction of attached workers receiving STC in percent. The next four rows

show the average of employment and average (employment weighted) hours for attached

workers, denoted n̄ and h̄, respectively, along with average output ȳ and consumption

c across attached workers. The final row shows, for each allocation, the gain in welfare

vis-à-vis the experiment g∗UI . Both in this table and in the remainder of the paper,

all welfare gains are expressed in percentage consumption-equivalent terms. Figure 3

compares labor input profiles for the three experiments g∗UI , g
∗
STC |g∗UI , and (gUI , gSTC)

∗

and the first best. These correspond to the theoretical labor input profiles of Figure 1,

showing hours and employment as a function of profitability x.23 Thick gray segments

indicate the region of STC take-up.

21The first-best allocation maximizes utilitarian welfare subject to only the resource constraint of the
economy.

22REPRUI is defined as the ratio between gUI and average consumption, expressed in percentage
terms. Analogously, REPRSTC is defined as the ratio between the maximal STC benefit gSTC h̄ and
average consumption. Thus the two replacement rates coincide if gSTC h̄ = gUI .

23The x-axis is scaled to the distribution of profitability shocks.
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Experiment g∗UI shows that optimal UI is somewhat above the calibrated level. The

corresponding level of n̄ is 0.984, compared to 0.968 in the calibration. Thus the number

of workers on layoff doubles. Hence layoffs respond quite strongly to gUI , a point we return

to below. Employment is below one at sufficiently low levels of profitability and increas-

ing. Hours are constant over the profitability range with positive layoffs and increasing

otherwise, as established by Part 1 of Proposition 3. In contrast, first-best employment

is one irrespective of profitability, and first-best hours are increasing throughout.

Experiment g∗STC |g∗UI shows that introducing STC is optimal when UI is fixed at g∗UI ,

and it establishes half of our first main result: under perfect PI, STC can substantially

improve welfare, here by 0.3%. The optimal level of gSTC is modest: the implied replace-

ment rate for STC is 7.97%, compared to 27.1% for UI. Nevertheless, this level of STC

is quite effective, reducing layoffs by more than half. As discussed in Section 3.2.1, an

increase in employment is not implied by our theoretical analysis, but occurs in all of our

computational experiments. Hours per worker drop substantially, so that output is lower

than in experiment g∗UI , despite the increase in employment. The reduction in spending

on UI outweighs the spending on STC, and government outlays as a percentage of output

are reduced from 2.19% under experiment g∗UI to 2%. The labor input profiles for this

experiment conform to Propositions 3 and 5. The take-up threshold xT lies above the

threshold xN0 at which the employment constraint becomes binding under no take-up.24

Thus some firms taking up STC would have retained all workers even in the absence of

STC. For these firms, STC does not have the benefit of reducing layoffs, but it distorts

hours. Employment is then continuous at the take-up threshold, while hours jump up.

Throughout the take-up region, hours are strictly lower than in the experiment g∗UI and

employment is uniformly higher.

In experiment gmax
STC |g∗UI , STC eliminates layoffs completely, but induces a very large

decline in hours. Overall, this leads to a large welfare loss of 1.85% vis-à-vis experiment

g∗UI . Together with the preceding experiment, this establishes our second main result:

Optimal STC is substantially less generous than UI, and introducing STC with equal

generosity results in a large welfare loss in comparison to having no STC at all. The left

panel of Figure 4 illustrates this result by plotting the welfare gain as a function of gSTC ,

with gUI fixed at g∗UI and with gSTC varying up to gmaxSTC . In our model there is no natural

reason for UI and STC to be equally generous. The optimal levels of UI and STC are

24Thresholds are not labeled in the figure, as it contains multiple experiments.
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Figure 3: Hours and Employment, Perfect PI
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determined by different trade-offs. Optimal UI balances the benefit of making transfers

to unattached workers against the cost of distorting the layoff decision of firms. Optimal

STC balances mitigation of this distortion against the cost of distorting hours in firms

that would abstain from layoffs even in the absence of STC.

Experiment (gUI , gSTC)
∗ shows that the optimal combination of UI and STC involves

substantially more generous UI than what is optimal if STC is not available: the benefit

level gUI increases by more than 8% (from 0.262 to 0.284), which corresponds to an

increase in the replacement rate from 27.1% to 29.9%. The mechanism underlying this

result is that STC counteracts the distortion of the composition of labor input associated

with UI. As a consequence, the availability of STC makes it optimal to offer more generous

UI, an indirect insurance effect of STC. As in experiment g∗STC |g∗UI , STC is substantially

less generous that UI in this experiment. The overall welfare gain of moving from g∗UI to

(gUI , gSTC)
∗ amounts to 0.53%. About half of this gain can be obtained by moving to

g∗STC |g∗UI , indicating that adjusting the level of UI is equally important in order to reap

the full benefit of the availability of STC as an additional instrument. Qualitatively the

pattern of labor inputs across profitability in Figure 3 is very similar to the experiment

27



Figure 4: Welfare Gains, Perfect PI
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g∗STC |g∗UI . However, both hours and employment are lower since both UI and STC are

more generous.

In the next two experiments we examine whether requiring a minimum hours reduc-

tion (MHR) can further improve welfare. The results for experiments (gSTC , gMHR)
∗|g∗UI

and (gUI , gSTC , gMHR)
∗ displayed in the Table 3 show that imposing an MHR is indeed

optimal, leading to further, albeit small welfare gains. The optimal level of gMHR is simi-

lar in the two experiments, at 0.81 and 0.82, respectively. As in the experiments without

MHR, optimal STC is substantially less generous than UI. In fact, it becomes slightly less

generous, as the MHR makes it possible to achieve the same reduction in layoffs with a

lower level of gSTC . Figure 5 shows the labor input profiles for these policy constellations.

For both experiments, hours are constant at gMHRh in the take-up region. The take-up

threshold is lower than in the experiments without an MHR, which is reflected in lower

take-up rates in Table 3. Because government expenditure on STC is reduced, taxes are

lower. Average hours and employment are higher.

To illustrate how the MHR affects welfare, the right panel of Figure 4 plots welfare

gains as a function of gMHR, holding gSTC and gUI fixed at (gUI , gSTC)
∗. Lowering

gMHR from a value of one first leaves welfare unaffected because all firms taking up

STC have hours strictly below one. As the constraint becomes binding with further

reductions in gMHR, some firms with n = 1 choose to forgo STC. This effect is desirable

since for these firms take-up of STC only distorts hours without any beneficial effect on

employment. However, other firms with n = 1 reduce hours even further to meet the

MHR. Quantitatively, this negative effect dominates and consequently welfare decreases.
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Figure 5: Hours and Employment, Perfect PI: Minimum Hours Reduction
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For further reductions in gMHR, the MHR constraint also binds for firms with n < 1.

In contrast to firms with n = 1, for these firms imposing the MHR has the additional

positive effect of reducing layoffs. Due to this effect, welfare now increases as gMHR is

reduced further. The welfare maximizing level of gMHR is reached in this region. Further

reductions in gMHR lead to large negative effects due to inefficient hours reductions and

because there are now more and more firms with n < 1 that do not take up STC. Finally,

there is a second flat region at very low levels of gMHR for which take-up is zero.

One noteworthy feature of the calibrated model is that employment and thus unem-

ployment is very sensitive to policy. To put this into perspective, we will now compare

this sensitivity with empirical evidence. For this purpose, it is useful to express the sen-

sitivity of unemployment with respect to the replacement rate as a semielasticity. The

local semielasticities are 15.6 and 10.4 at g∗UI and g∗STC |g∗UI , respectively. Costain and

Reiter (2008) estimate a semielasticity of 3.09. This is substantially smaller than the

semielasticity implied by our calibration. This suggests that the model may be missing

features that reduce the semielasticity. Interestingly, the model implies that STC can

play an important role in reducing the semielasticity. Specifically, the impact of an in-
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crease in the replacement rate on unemployment is much weaker when STC is adjusted

optimally. At g∗STC |g∗UI , for example, the associated local elasticity is 4.52.

4.3 No Private Insurance

We now turn to the second scenario in which firms have no access to PI. This opens up

an additional channel through which STC can affect welfare, via a direct insurance effect.

At first sight, our analysis in Section 4.2 may suggest that this will add an additional

positive welfare effect of STC, on top of the mitigation of labor input distortions. In

Figure 3 hours per worker are increasing in profitability (weakly so in the region with

positive layoffs). Thus total hours are rising faster in profitability than employment.

Taking as given this pattern of labor inputs, from an insurance perspective it is then

better to make transfers proportional to total hours rather than employment. However,

the labor input profiles in Figure 3 are optimal when firms have access to perfect PI. As

we have seen in Section 3, labor input profiles are different if firms lack this access. In

particular, the hours profile is declining over the profitability region in which firms engage

in layoffs. This has two important implications for the welfare effects of STC. First, the

positive effect from the mitigation of labor input distortions is greatly diminished. This

is because the most distressed firms, which account for most layoffs, prefer high hours

per worker. Second, a direct positive insurance effect fails to materialize, and the effect

is even slightly negative, because STC fails to transfer resources to the most distressed

firms. We find that overall, STC fails to substantially improve welfare.

The results of the policy experiments are reported in Table 4. The left panel of Figure

6 plots welfare gains associated with variations in gSTC up to gmaxSTC = g∗UI/h, given g
∗
UI .

The optimal level of gSTC in experiment g∗STC |g∗UI is strictly positive at 0.003, but very

close to zero and yields a negligible welfare gain of 0.93 per million that is imperceptible

in the plot. This is the second half of our main first main result: STC delivers substantial

welfare gains if firms have access to perfect PI, but fails to do so if firms have no access

to PI.

Since the optimal level of STC in experiment g∗STC |g∗UI is so small, it comes as no

surprise that the availability of STC has a negligible impact on the optimal level of UI

when both are optimized jointly in experiment (gUI , gSTC)
∗. Under perfect PI, a modest

level of STC is optimal. Why is STC of a similar magnitude not optimal here? To

shed light on the underlying mechanisms, we include an additional experiment labeled
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Table 4: Policy Experiments: No PI

Calibr. g∗UI g∗STC |g∗UI gSTC |g∗UI (gUI , gSTC)
∗ FB

gUI 0.247 0.25 0.25 0.25 0.25

gSTC 0.00316 0.0758 0.00331

gMHR 1 1 1

τ 0.0157 0.017 0.017 0.018 0.0171

REPRUI (%) 25 25.3 25.4 25.8 25.4

REPRSTC (%) 0.321 7.6 0.336

STC Take-Up (%) 78.9 51.3 78.8

n̄ 0.984 0.98 0.98 0.984 0.98 1

h̄ 1 1 0.999 0.969 0.999 1.02

ȳ 0.996 0.994 0.992 0.975 0.992 1.02

c̄ 0.984 0.982 0.981 0.963 0.981 0.982

Welf. Rel. to g∗UI (%c) −0.012572 0.00092858 −0.076012 0.0009721 7.0041

Figure 6: Welfare Gains, No PI
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gSTC |g∗UI . Here gSTC is chosen such that the ratio of STC to UI is the same as in the

experiment g∗STC |g∗UI under perfect PI.
Figure 7 is the counterpart of Figure 3, showing labor input profiles for the familiar ex-

periments g∗UI and g
∗
STC |g∗UI , together with the additional experiment gSTC |g∗UI . Starting

with the experiment g∗UI , the key difference in the pattern of labor inputs in comparison

to Figure 3 is that hours per worker are now strictly decreasing rather than increasing

over the profitability range with positive layoffs, in accordance with Proposition 4. Hours

are strictly increasing over the region with n = 1, in line with Proposition 4, yet quan-
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Figure 7: Hours and Employment, No PI
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titatively they are virtually flat. Recall from the discussion in Section 3.2.2 that with

perfect PI the strictly increasing pattern of hours is due to a substitution effect. For the

case of no PI, this substitution effect is counteracted by an income effect. Given KPR

preferences, the income effect does not fully offset the substitution effect only because it

is weakened by the presence of the tax. Quantitatively this impact of the tax is small.

Since the optimal level of STC in the experiment g∗STC |g∗UI is very small, labor input

profiles lie virtually on top of profiles from experiment g∗UI . The thick gray segments

indicate that take-up of STC occurs at high levels of profitability, distorting hours without

any benefit in terms of reduced layoffs. The effects of STC on the labor input profiles

are easier to discern for the experiment gSTC |g∗UI . Here only firms with intermediate

profitability take up STC, and for most of these firms STC merely distorts hours, without

any reduction in layoffs. Firms with very low profitability, which account for most layoffs,

forego STC in favor of high hours. This shows that STC’s ability to mitigate the labor

input distortions caused by UI is greatly diminished here. Correspondingly, Table 4 shows

little positive impact on employment, whereas hours and welfare decline significantly in

this experiment.
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The preceding analysis explains at least part of why STC fails to substantially improve

welfare when firms lack access to PI. Yet the analysis is not complete, because STC now

also has a direct insurance effect. But the V-shaped pattern of hours induced by the lack

of insurance implies that STC is poorly targeted when it comes to providing insurance.

The most distressed firms choose to forego STC. STC is collected by more profitable

firms. Hence STC redistributes in the wrong direction between these groups. STC shifts

consumption in the right direction within the group of firms with the highest levels of

profitability, those that employ all workers and take up STC, since hours are strictly

increasing over this profitability region. Because hours are virtually flat however, one

would expect this positive effect to be very small.

To quantify the overall direct insurance impact of STC, we hold labor input decisions

constant at those corresponding to the experiment g∗UI and calculate net government

transfers induced by the levels of STC from experiment g∗STC |g∗UI in conjunction with a

corresponding budget clearing tax τ . The dash-dotted line in Figure 8 plots the difference

in this resulting net transfer schedule and net transfer schedule under g∗UI . Clearly, for

the group of low profitability firms who do no take-up STC, net transfers worsen. Within

the group of firms that take up STC, low profitability firms’ net tranfers improve by more

than high profitability firms’. Next, we evaluate the level of welfare associated with the

consumption profiles that are induced by these net transfers. Quantitatively, the direct

insurance effect of STC on welfare is a negative, but very small at 0.79 per million. Of

course this reflects in part that g∗STC |g∗UI is very small. The direct insurance effect in the

experiment gSTC |g∗UI is −0.002%. This is negligible in comparison to the welfare gain

of 0.3% induced by a similar STC level in the case of perfect PI. Thus it is the greatly

diminished ability to mitigate labor input distortions which explains the failure of STC

to substantially improve welfare.

We would like to stress that the finding of small direct insurance effects of STC should

not lead to the conclusion that STC can be evaluated in a model with risk neutral firms,

when studying firms that do lack access to PI. The degree of access to financial markets

shapes how firms adjust labor inputs in response to shocks, and this matters for the

ability of STC to affect labor input decisions. Thus taking into account firms’ access

to financial markets is important, independent of whether STC has small or large direct

insurance effects.

The option to combine STC with an MHR does not yield any additional welfare
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Figure 8: Change in Net-Transfers Due to STC, No PI
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gains. Thus the results from the experiments (gSTC , gMHR)
∗|g∗UI and (gUI , gSTC , gMHR)

∗

are omitted from the table, since they are identical to the results from experiments

g∗STC |g∗UI and (gUI , gSTC)
∗, respectively. The right panel of Figure 6 is the counterpart

of the corresponding panel of Figure 4, and illustrates that the introduction of an MHR

does not improve welfare in the experiment (gSTC , gUI)
∗. As in Figure 4 the impact of

reducing gMHR is non-monotone. Once the MHR is low enough to bind, welfare first

decreases and then increases, but never exceeds the level obtained for gMHR = 1.25

5 Intensive-Margin Technology

Up to now, we have focused on a specification of technology in which hours of different

workers are perfectly substitutable. It appears likely that the welfare effects of STC vary

with the features of technology, such as the substitutability of hours. Thus it would

be valuable to carry out a comprehensive investigation of the role of technology for the

optimality of STC. In this section we take a first step in this direction by considering a

specification that, in terms of the substitutability of hours of different workers, lies at

the opposite end of the spectrum in that there is no substitutability at all. A firm then

either produces with n = 1 or shuts down entirely, and all adjustment of labor inputs

occurs along the intensive margin. We refer to this as the intensive-margin case in short.

We find that our two main results carry over to this specification. First, STC yields

substantial welfare gains only in the case with perfect PI. In fact, optimal STC is zero

under no PI. Second, optimal STC is always substantially less generous that optimal UI,

25The kink in Figure 6 is not present here, as all firms adopting STC have employment n = 1.
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and making STC equally generous results in a large welfare loss.

Two main differences emerge in comparison to the standard technology. First, STC

has a positive direct insurance effect when firms lack access to private insurance. This

does not happen under the standard technology because the most distressed firms ad-

justed by choosing layoffs in conjunction with high hours. In contrast, here the technology

is such that changes in hours per worker are the only way to adjust, short of shutting

down. Nevertheless, we find that the direct insurance effect is too small to make STC

worthwhile in the case of no PI. Second, we find that welfare gains of STC under perfect

PI are smaller. This is because STC can mitigate the distortions caused by UI only via

the shutdown margin, which is not very responsive to STC.

To put both the standard technology and the intensive-margin technology into per-

spective, we start with the more general specification used by BW. In this specification

l(n, h) is a function that combines employment and hours into a labor-input index, and

output is given by xf(l(n, h)). The standard case is then l(n, h) = nh. The technology

we consider in this section can be written as

l(n, h) =

{
h for n = 1,

0 for n < 1.
(16)

The index of labor input is zero whenever employment falls short of one, hence reducing

hours per worker is the only possible response to a profitability shock, apart from shutting

down production. This case and the standard case are at the two ends of the spectrum of

specifications exhibiting a property which BW refer to as Assumption L. This assumption

requires that technology is not biased against work sharing, in the sense that reducing

hours per worker while keeping total hours constant does not result in a loss of output.26

Work sharing is neutral under the standard technology, in the sense that reducing hours

per worker given constant total hours has no effect on output. The intensive-margin

case is most favorable to work sharing: reducing employment for given total hours would

result it a complete loss of output.

There is no need to revisit the theoretical analysis of Section 3 for this specifica-

tion. The only change is that there is no longer a region in which employment lies

strictly between zero and one. The analysis of the behavior of hours per worker when the

26Formally, the function l(n, h) satisfies Assumption L if n2h2 = n1h1 and n2 > n1 imply l(n2, h2) ≥
l(n1, h1).
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employment constraint binds carries over directly. Thus we immediately carry out the

sequence of computational experiments described in Section 4, again for the scenarios of

perfect and no private insurance.

Table 5: Calibration: Intensive-Margin Case

Value Perfect PI No PI Target

σ 2 2

α 0.67 0.67

σx 0.1 0.1

ψ 1.1 1.1 Frisch elasticity 0.7

η 0.663 0.661 h = 1 (Normalization)

υ 0.045 0.045 Unattached workers 0.045

v0 (% c) (% h) 0.712 (29)(41) 0.425 (57)(87) Temporary layoffs 0.015

gUI 0.246 0.245 Replacement rate 25

The calibration for both cases under the intensive-margin technology is shown in Table

5. Calibrated parameters remain essentially unchanged, with exception of the fixed-cost

parameter v0. Temporary layoffs are much less attractive in the intensive-margin case

than in the standard case, because they result in a complete loss of output. Matching

the targeted rate of temporary layoffs then requires a substantially higher fixed cost of

working positive hours. For the case of perfect PI, these amount to a consumption-

equivalent value of 28.8% as opposed to 6.63% percent for the standard case. Similarly,

for the case of no PI, this cost increases from 11% to 57.5% in consumption equivalents.27

5.1 Perfect Private Insurance

Table 6 and Figure 9 show the results of the policy experiments for the case of perfect

PI. Once again it is optimal to introduce STC for a given level of g∗UI . The left panel

of Figure 10 shows welfare as a function of gSTC with UI fixed at g∗UI . Comparison with

the left panel of Figure 4 shows that here the ability of STC to improve welfare is more

27By targeting the aggregate rate of temporary layoffs, we implicitly assume that all firms in the
economy operate the intensive-margin technology. Similarly, in the benchmark calibration we implicitly
assume that all firms in the economy operate the standard technology. It is likely that the technology in
some sectors is better described by the standard case, while in other sectors the intensive-margin case is
more appropriate. If the fixed cost of employment is similar across sectors, then, everything else equal,
one would expect that sectors operating the standard technology have a higher rate of temporary layoffs.
In future research, it would be interesting to consider sector-specific calibrations of the model.
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Table 6: Intensive-Margin Case, Perfect PI

Calibr. g∗UI g∗STC |g∗UI gmaxSTC |g∗UI (gUI , gSTC)
∗ FB

gUI 0.246 0.268 0.268 0.268 0.272

gSTC 0.0516 0.315 0.0566

gMHR 1 1 1

τ 0.0157 0.0218 0.0221 0.0542 0.0236

REPRUI (%) 25 27.6 27.8 30 28.3

REPRSTC (%) 5.25 30 5.76

STC Take-Up (%) 49.6 48.8 49.5

n̄ 0.984 0.968 0.975 0.994 0.972 1

h̄ 1 1 0.979 0.85 0.977 1.02

ȳ 0.996 0.984 0.975 0.904 0.972 1.02

c̄ 0.984 0.971 0.963 0.892 0.959 0.986

Welf. Rel. to g∗UI (%c) −0.21582 0.074817 −2.2137 0.082714 4.138

Figure 9: Intensive-Margin Case, Perfect PI

0.79 0.88 0.93 1.00 1.07 1.14 1.26
0

0.2

0.4

0.6

0.8

1

1.2
h

x

0.79 0.88 0.93 1.00 1.07 1.14 1.26
0

0.2

0.4

0.6

0.8

1

n

x

 

 

g∗UI

g∗STC|g
∗

UI

(gUI , gSTC)
∗

FB

limited. Welfare is maximized at a level that is lower relative to gUI , and the welfare gain

of 0.075% is relatively small. The reason is that here STC is less effective in mitigating
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the distortion of employment levels caused by UI. The employment profiles in Figure 9

exhibit a shutdown region with n = 0 for low profitability, immediately followed by an

operating region with n = 1 for higher profitability levels. In contrast to the standard

technology, there is no intermediate region with employment strictly between zero and

one. As a consequence, STC cannot raise employment at the margin for a given level of

profitability x. As is evident in the figure, it can only affect employment by decreasing the

shutdown region. In proportion to g∗STC = 0.052, the increase in employment from 0.968

to 0.975 is small in comparison to the response observed under the standard technology.

At the same time, STC once again distorts hours over a range of profitability levels for

which firms would have chosen n = 1 even in the absence of STC. This adverse effect is

about as strong as under the standard technology. Taken together, this explains the lower

level of optimal STC. The results for experiment gmax
STC |g∗UI show that as in the standard

case, making STC as generous as UI results in a large welfare loss. This is also visible

in the left panel of Figure 10. Policy experiment (gUI , gSTC)
∗ involves an increase in UI.

Thus, as in the standard case, STC improves insurance indirectly by allowing for more

generous UI. The associated welfare gains are negligible, however. This contrasts with

the standard case, where jointly optimizing STC and UI accounts for about half of the

overall welfare gain of introducing STC.

Figure 10: Welfare Gains, Intensive-Margin Case, Perfect PI
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Table 6 does not contain any results for experiments involving gMHR, because it turns

out that introducing an MHR is not optimal here. This is illustrated in the right panel

of Figure 10, which shows that an MHR cannot increase welfare further in experiment

(gUI , gSTC)
∗. As in Figure 4, at first there is a flat segment as gMHR is reduced below
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one because the MHR does not yet bind. As gMHR is reduced further, the usual trade-off

arises as some firms forego STC and other firms reduce hours further to meet the MHR.

The effect on welfare is non-monotone. In contrast to Figure 4, here welfare always

remains lower than in the constellation without MHR.

5.2 No Private Insurance

In the case of no PI, STC has a direct insurance effect. For the standard technology

we obtained a negative direct insurance effect. This is driven by the declining profile of

hours across the region of profitability levels at which firms continue to produce while

engaging in some layoffs. This region is absent in the intensive-margin case. All operating

firms have n = 1, and thus Proposition 4 implies a strictly increasing hours profile, which

ensures a positive direct insurance effect of STC.

Table 7: Intensive-Margin Case, No PI

Calibr. g∗UI gSTC |g∗UI FB

gUI 0.245 0.239 0.239

gSTC 0.0723

gMHR 1

τ 0.0157 0.0131 0.0146

REPRUI (%) 25 24.2 24.6

REPRSTC (%) 7.24

STC Take-Up (%) 45.4

n̄ 0.984 0.993 0.992 0.94

h̄ 1 1 0.973 1.03

ȳ 0.993 1 0.983 0.978

c̄ 0.981 0.989 0.972 0.953

Welf. Rel. to g∗UI (%c) −0.063892 −0.13709 3.4684

Nevertheless, we find that introducing STC is not optimal here. This echoes the

finding that the optimal level of STC is very small under the standard technology for the

case of no PI. Here STC is even less desirable. The reason is a relatively low optimal level

of UI. In all the configurations we have considered so far, the optimal level of UI exceeds

the level obtained in the calibration, which in turn implies that the associated level of

temporary layoffs exceeds the level targeted in the calibration. In contrast, here g∗UI falls

short of the level of UI in the calibration, and at 0.7% the associated level of temporary
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Figure 11: Intensive-Margin Case, No PI
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layoffs is much lower that the calibration target. Consequently, once the level of UI is

chosen optimally, there is simply not much scope for STC to reduce temporary layoffs. To

illustrate what this means for the effects of STC, we again conduct experiment gSTC |g∗UI ,
introducing a level of STC that is as generous as the optimal level under perfect PI. The

results are displayed along with the experiment g∗UI and the first best in Table 7. Not

only is there very little scope for STC to increase employment, the introduction of STC

even reduces employment slightly. This is because STC still leads to a strong reduction of

hours, as is evident from the dashed line in the top panel of Figure 11. Without a strong

positive response of employment, there cannot be a sufficient reduction in the transfers

to UI recipients to offset the costs of STC. Thus the tax rate τ must increase, which

then induces the perverse effect on employment. This result once again puts emphasis

on the point that the magnitude of temporary layoffs is a key determinant of the welfare

benefits of STC.

The low level of g∗UI , in turn, can be traced to a high marginal welfare loss from increas-

ing the tax rate τ , which is generated by the interaction between the intensive-margin

technology and the lack of insurance. This interaction puts firms with adverse profitabil-
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Figure 12: Intensive-Margin Case, Change in Net-Transfers Due to STC, No PI
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ity shocks in an especially adverse position. Under the standard technology, firms can

smoothly adjust to profitability shocks through temporarily layoffs. The intensive-margin

technology removes this adjustment mechanism. As a consequence, the average marginal

utility from consumption across firms is substantially higher than in the standard case,

making it very costly to raise revenue for financing UI.

This discussion is not yet complete, because we still need to consider the positive direct

insurance effect of STC. Figure 12 is constructed in the same way as Figure 8, and shows

that the net transfers induced by STC in experiment gSTC |g∗UI shift consumption towards

low profitability states. The magnitude of these transfers is very small, however, because

the hours profile is virtually flat for the reason discussed in Section 4.3. Consequently, the

direct insurance effect on welfare, computed as in Section 4.3, is very small at 0.00023%.

Overall, then, STC does not directly improve insurance in the settings we have studied

in this paper. It only has the potential to do so in the absence of perfect PI. Yet the

shape of the hours profile precludes substantial positive effects when private insurance is

lacking entirely.

6 Conclusion

We have studied the welfare effects of short-time compensation (STC), departing from

previous work by considering a setting in which unemployment insurance (UI) is socially

optimal, and obtained two main results. First, STC can substantially improve welfare

compared to a system that only relies on UI, but only when firms have access to private

insurance. Second, optimal STC is substantially less generous than UI even when firms

do have access to private insurance, and equally generous STC is worse than not offering
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STC at all.

In the course of this analysis, the paper also contributes a new comparative statics

result to the implicit contracts literature: lacking access to private insurance, firms en-

gaging in layoffs respond to a further decline in profitability by reducing employment and

increasing hours per worker. This property is a key determinant of the welfare effects of

STC and a testable implication of the model. Thus a natural next step is to investigate

this implication empirically.

We see our analysis as groundwork for studying the welfare effects of STC in dynamic

models of the labor market. As discussed in the introduction, dynamic models capturing

all the features which make implicit contract models a natural choice for studying STC

have not yet been developed. Given this, a potentially fruitful next step is to consider a

variety of dynamic models, each retaining some of the features of the static model. The

findings of the present paper can help to identify which models are likely to be interesting,

as well has indicate potential pitfalls.

A relatively straightforward dynamic extension is a model in which firms face credit

constraints and self-insure against fluctuations in profitability. Here one could maintain

the simplification that attached workers are homogeneous, and assume that attachment is

permanent. This setting would be especially interesting for revisiting the direct insurance

effect of STC. In our static setting, the lack of private insurance affects low and high prof-

itability levels symmetrically. This generates a flat hours profile across high profitability

states without layoffs, as firms cannot save. The option to save would make STC less

attractive for highly profitable firms and hours would rise more strongly in response to

a temporary increase in profitability, potentially increasing the direct insurance effect of

STC.

This extension still does not permit an evaluation potential adverse effects of STC

on worker reallocation. Introducing mobility of workers while maintaining incomplete

markets may be intractable, however. Proceeding with complete markets and assuming

exogenous UI would yield an interesting setting for studying the trade-off between STC’s

ability to mitigate distortions caused by UI, and potential reallocation effects. When

interpreting results from this exercise, however, one should keep in mind that such a

model may not capture well the STC take-up behavior of firms facing credit constraints.
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A Proofs

Proposition 1

Substituting the functions c∗w and c∗b into equation (14) and using the functional form of

the utility function (2) yields

λ−
1−σ
σ

1− σ
− λ−

1−σ
σ v(h)

1−σ
σ

1− σ
+ λ−

1−σ
σ v(h)

1−σ
σ
v′(h)h

v(h)

= λ−
1−σ
σ

[
1− v(h)

1−σ
σ

]
− λ

[
gUI − h̄T · gSTC

]
.

Dividing both sides by λ−
1−σ
σ and rearranging terms, we obtain

σ

1− σ
+ v(h)

1−2σ
σ

[
v′(h)h− σ

1− σ
v(h)

]
+ λ

1
σ

[
gUI − h̄T · gSTC

]
= 0. (17)

Evaluating the left-hand side at h = 0 gives

σ

1− σ

(
1− v

1−σ
σ

0

)
+ λ

1
σ

[
gUI − h̄T · gSTC

]
> 0.

This term captures the fixed cost of employing an additional worker. The first sum-

mand reflects the utility fixed cost, and is strictly positive since v0 ∈ (0, 1). The second

term reflects the fixed cost in terms of the consumption good, induced by policy. It is

nonnegative since h̄gSTC ≤ gUI .

Let

Ṽ (h) ≡ v(h)
1−2σ

σ

[
v′(h)h− σ

1− σ
v(h)

]
.

Straightforward differentiation yields that

Ṽ ′(h) = −hV ′(h), (18)

where the function V (h) was introduced during the discussion of preferences in Section 2.

Since V ′(h) > 0, it follows that the left-hand side of equation (17) is strictly decreasing

in h. Since limh→hmax V (h) = ∞, equation (18) implies that limh→hmax Ṽ
′(h) = −∞.

Thus the left-hand side of equation (17) converges to minus infinity as h converges to

hmax. Consequently, there exists a value of hours in (0, hmax) which solves equation (17),

and the solution is unique. If gSTC > 0, then the left-hand side of equation (17) is
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strictly decreasing in T , and thus the solution for hours is strictly decreasing in T . If

gUI − h̄T · gSTC > 0, then the left-hand side of equation (17) is strictly increasing in λ,

hence the solution for hours is strictly increasing in λ. If gUI − h̄T · gSTC = 0, then the

solution for hours is independent of λ.

As discussed in the text, the result that hours are increasing in λ if gUI− h̄T ·gSTC > 0

and independent of λ if gUI − h̄T · gSTC = 0 also holds for other common specifications of

utility. We supplement the proof for the KPR specification with a discussion of additively

separable and GHH preferences. If preferences are additively separable, that is, u(c, h) =
c1−σ

1−σ + v(h), then equation (14) becomes

v′(h)h− [v(h)− v(0)] + λ
[
gUI − h̄T · gSTC

]
= 0.

Once again hours are strictly increasing in λ if gUI − h̄T · gSTC > 0 and independent of

λ otherwise. If utility takes the GHH form u(c, h) = (c+v(h))1−σ−1
1−σ , then equation (14)

becomes

λv′(h)h− λ [v(h)− v(0)] + λ
[
gUI − h̄T · gSTC

]
= 0.

In this case hours are independent of λ for any value of gUI − h̄T · gSTC .

Proposition 2

Since V (h) is strictly increasing on (0, hmax), it follows that limh→0 V (h) is finite. Since

limh→0 f
′(h) = +∞, the right-hand side strictly exceeds the left-hand side as h converges

to 0. Since limh→hmax V (h) = +∞ while f ′ (hmax) is finite, the left-hand side of equation

(15) strictly exceeds the right-hand side as h converges to hmax. Since V is strictly

increasing while f ′ is strictly decreasing, equation (15) has a unique solution in (0, hmax).

The right-hand side is strictly increasing in x, hence the solution is strictly increasing

in x. Suppose that the solution does not converge to hmax as x converges to infinity.

Then the left-hand side converges to a finite value while the right-hand side converges to

infinity as x converges to infinity, a contradiction. If gSTC > 0, then the right-hand side

is strictly decreasing in T , hence the solution is strictly decreasing in T . Finally, note

that at the solution the term in square brackets on the right-hand side is strictly positive.

Thus the right-hand side is strictly increasing in λ, which implies that the solution for

hours is strictly increasing in λ.
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Proposition 3

We start with preliminary steps that apply to both T = 0 and T = 1. Let h̃T (λ) denote

the level of hours that solves equation (14), which is well defined according to Proposition

1. Let h̃TN(x, λ) denote the level of hours that solves equation (15), which is well defined

according to Proposition 2.

With χ = 0, first-order condition (12) implies that the multiplier λ(x) does not vary

with x at the solution. Let λ∗ denote the corresponding constant value of the multiplier.

Substituting the functions c∗w and c∗b into equation (10), we can solve explicitly for the

value that employment would have to take if the employment constraint is slack:

n̂T (x, h) ≡ (f ′)−1

(
1

xh

{
1

λ∗
[u(c∗b(λ

∗), 0)− u(c∗w(λ
∗, h), h)]

+ gUI − h̄T · gSTC + (τ + T · gSTC)h+ c∗w(λ
∗, h)− c∗b(λ

∗)

})
· 1
h
.

(19)

Consider n̂T (x, h) as a function of x for a given constant level of hours h. This function

is strictly increasing, and the Inada conditions on f ′ imply that n̂T (x, h) converges to

infinity as x converges to infinity, and converges to zero as x converges to zero. It follows

that there exists a unique threshold x̂TN(h) such that n̂T
(
x̂TN(h), h

)
= 1.

With these preliminaries in hand, we are ready to prove the two parts of the propo-

sition.

1. Across profitability levels with a slack employment constraint, hours are constant

at h0(x) = h̃0(λ∗), while employment is given by n0(x) = n̂0
(
x, h̃0(λ∗)

)
and thus

strictly increasing in x. This implies that the employment constraint becomes

binding at x0N ≡ x̂0N

(
h̃0(λ∗)

)
. Thus the employment constraint is slack on (0, x0N)

and binding on (x0N ,+∞). On the latter interval, hours are given by h0(x) =

h̃0N(x, λ
∗) and thus strictly increasing.

2. The proof for the case T = 1 is similar to the one for T = 0 in part 1. The only differ-

ence is that constraint (MHR) may be binding. Let h̃1MHR ≡ min
[
h̃1(λ∗), gMHRh̄

]
.

Then, across profitability levels with a slack employment constraint, hours are con-

stant at h1(x) = h̃1MHR, while employment is given by n1(x) = n̂1
(
x, h̃1MHR

)
and

thus is strictly increasing in x. This implies that the employment constraint be-

comes binding at x1N ≡ x̂1N

(
h̃1MHR

)
. Thus the employment constraint is slack

on (0, x1N) and binding on (x1N ,+∞). On the latter interval, hours are given
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by h1(x) = min
[
h̃1N(x, λ

∗), gMHRh̄
]
. If h̃1N (x1N , λ

∗) ≥ gMHRh̄, set x
1
MHR = x1N .

If limx→∞ h̃1N(x, λ
∗) ≤ gMHRh̄, set x1MHR = +∞. Otherwise, set x1MHR to the

unique value of x that satisfies h̃1N(x, λ
∗) = gMHRh̄. With this definition of x1MHR,

hours h1(x) are strictly increasing on (x1N , x
1
MHR), and constant at gMHRh̄ on

(x1MHR,+∞).

3. There are four cases to consider. First, suppose x ≤ min[x0N , x
1
N ]. Then h0(x) =

h̃0(λ∗) and h1(x) = min
[
h̃1(λ∗), gMHRh̄

]
. The desired result follows immedi-

ately from Proposition 1, which implies h̃0(λ∗) < h̃1(λ∗). Second, consider x ≥
max[x0N , x

1
N ]. Then h0(x) = h̃0N(x, λ

∗) and h1(x) = min
[
h̃1N(x, λ

∗), gMHRh̄
]
. The

desired result follows immediately from Proposition 2, which implies h̃1N(x, λ
∗) <

h̃0N(x, λ
∗). Third, suppose that x1N < x0N and consider x ∈ [x1N , x

0
N ]. Now h0(x) =

h̃0(λ∗) and h1(x) = min
[
h̃1N(x, λ

∗), gMHRh̄
]
. The desired result follows from

h̃1N(x, λ
∗) ≤ h̃1N(x

0
N , λ

∗) < h̃0N(x
0
N , λ

∗) = h̃0(λ∗)

where the first inequality uses that h̃1N(x, λ
∗) is increasing in x, the second inequality

uses Proposition 2, and the final equality uses the definition of x0N . Fourth, suppose

that x0N < x1N and consider x ∈ [x0N , x
1
N ]. Here h0(x) = h̃0N(x, λ

∗) and h1(x) =

min
[
h̃1(λ∗), gMHRh̄

]
. The desired result follows from

h̃0N(x, λ
∗) ≥ h̃0N(x

0
N , λ

∗) = h̃0(λ∗) > h̃1(λ∗)

where the first inequality uses that h̃0N(x, λ
∗) is strictly increasing in x, the equality

uses the definition of x0N , and the second inequality uses Proposition 1.

Proposition 4

We start with preliminary steps that apply to both T = 0 and T = 1. As a first step, we

analyze the comparative statics of hours and employment with respect to profitability in

a relaxed problem without constraints (N) and (MHR). Let ñT (x) and h̃T (x) denote the

optimal levels of employment and hours associated with this problem. Since we are in the

case χ = 0, constraint (PI) is irrelevant, so only the constraints (BC) and (NI) remain.

In particular, since there is no insurance, there is no interdependence of the optimization

problem across across profitability levels, so we can solve the problem separately for each
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level of x. We can reduce the problem for a given level of x to an unconstrained problem

of choosing hours and employment. To do so, substitute the functions c∗w and c∗b along

with ι = 0 into the budget constraint. Solving the resulting equation for λ−
1−σ
σ yields

λ−
1−σ
σ =

[
xf(nh) + (1− n)gUI + n

(
h̄− h

)
T · gSTC − τnh

nv(h)
1−σ
σ + (1− n)

]1−σ

. (20)

Substituting the functions c∗w and c∗b along with ι = 0 into the objective yields

nu(cw, h) + (1− n)u(cb, 0) =
1

1− σ
λ−

1−σ
σ

[
(nv(h)

1−σ
σ + (1− n)

]
− 1

1− σ
.

Using equation (20) to replace λ−
1−σ
σ and dropping the constant − 1

1−σ , the objective can

be written as

1

1− σ

[
xf(nh) + (1− n)gUI + n

(
h− h

)
T · gSTC − τnh

]1−σ [
nv(h)

1−σ
σ + (1− n)

]σ
.

The optimal labor input levels ñT (x) and h̃T (x) must maximize this objective. Since

σ > 1, this is equivalent to maximizing

G(n, h, x) ≡ log [Ω(n, h, x)]− 1

ψ
log [Γ(n, h)] (21)

where ψ ≡ σ−1
σ

∈ (0, 1) and

Ω(n, h, x) ≡ xf(nh) + (1− n)gUI + n
(
h− h

)
T · gSTC − τnh,

Γ(n, h) ≡ nv(h)−ψ + (1− n).

We will determine the signs of the derivatives of ñT (x) and h̃T (x) by studying this for-

mulation of the problem. To economize on notation, we suppress arguments of functions

in this analysis. The functions Ω and Γ have the following properties which are useful in

what follows.

Ωnh = −x|f ′′|nh+
1

n
Ωh, (22)

Γnh =
1

n
Γh, (23)

Γnn = 0, (24)
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Γhh = −nψv−(2+ψ)
[
vv′′ − (1 + ψ)(v′)2

]
> 0. (25)

The first-order conditions are

Gn =
Ωn

Ω
− 1

ψ

Γn
Γ

= 0, (26)

Gh =
Ωh

Ω
− 1

ψ

Γh
Γ

= 0. (27)

From now on, all second derivatives are evaluated at the solution to these first-order

conditions. Using that Ωx = f , Ωnx = f ′h, and Ωhx = f ′n, the second derivatives

involving profitability are given by

Gnx =
f ′hΩ− Ωnf

Ω2
,

Ghx =
f ′nΩ− Ωhf

Ω2
.

Using that Ωnn = −x|f ′′|h2, Ωhh = −x|f ′′|n2, and equation (22), second derivatives for

labor inputs are

Gnn = −x|f
′′|h2Ω + (Ωn)

2

Ω2
− 1

ψ

ΓnnΓ− Γ2
n

Γ2
,

Ghh = −x|f
′′|n2Ω + (Ωh)

2

Ω2
− 1

ψ

ΓhhΓ− Γ2
h

Γ2
,

Gnh = −
x|f ′′|nhΩ− 1

n
ΩhΩ + ΩnΩh

Ω2
− 1

ψ

ΓnhΓ− ΓnΓh
Γ2

.

Using equations (22)–(25) and the first-order conditions, these second derivatives can be

written as

Gnn = −x|f
′′|h2Ω + (1− ψ)(Ωn)

2

Ω2
,

Ghh = −x|f
′′|n2Ω + (1− ψ)(Ωh)

2

Ω2
− 1

ψ

Γhh
Γ
,

Gnh = −x|f
′′|nhΩ + (1− ψ)ΩnΩh

Ω2
.

The sign of d
dx
h̃T (x) coincides with the sign of

−GnnGhx +GnhGnx.
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Dropping the denominator Ω2, which appears in all four second derivatives involved in

this condition, we see that the left-hand side has the same sign as

(
x|f ′′|h2Ω + (1− ψ)(Ωn)

2
)
(f ′nΩ− Ωhf)

− (x|f ′′|nhΩ + (1− ψ)ΩnΩh) (f
′hΩ− Ωnf) .

(28)

Exploiting cancellations, this reduces to

− [x|f ′′|hΩf + (1− ψ)ΩΩnf
′] · [hΩh − nΩn] . (29)

Since, from the definition of Ω,

hΩh − nΩn = n
[
gUI − h̄T · gSTC

]
, (30)

the expression in equation (29) is strictly negative if gUI − h̄T · gSTC > 0 and zero if

gUI − h̄T · gSTC = 0.

The sign of d
dx
ñT (x) coincides with the sign of

−GhhGnx +GnhGhx.

This expression has the same sign as

(
x|f ′′|n2Ω + (1− ψ)(Ωh)

2
)
(f ′hΩ− Ωnf)

− (x|f ′′|nhΩ + (1− ψ)ΩnΩh) (f
′nΩ− Ωhf)

+
Ω4

ψ

Γhh
Γ
Gnx.

The first two rows are symmetric, with switched roles of n and h, to equation (28).

Consequently, this expression simplifies to

[x|f ′′|nΩf + (1− ψ)ΩΩhf
′] · [hΩh − nΩn] +

Ω4

ψ

Γhh
Γ
Gnx.

Equation (30) implies that the first summand is nonnegative. Next, we show that Gnx

is strictly positive, which allows to conclude that ñT (x) is strictly increasing in x. Using
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the definition of Ω, we have

Gnx =
f ′hgUI + (f − f ′nh) ·

[
gUI − h̄T · gSTC + (T · gSTC + τ)h

]
Ω2

.

This expression is strictly positive because strict concavity of f ensures f − f ′nh > 0,

and since gUI − h̄T · gSTC ≥ 0.

To summarize, so far we have shown that ñT (x) is strictly increasing in x, and that

h̃T (x) is weakly decreasing in x, strictly so if gUI − h̄T · gSTC > 0. As mentioned in

Footnote 15, a by-product of this proof is that marginal utility of consumption, which

coincides with the Lagrange multiplier associated with the budget constraint, is a strictly

decreasing function of x in the relaxed problem. Let λ̃
T
(x) denote the value of this

Lagrange multiplier at the optimal solution. For the case gUI− h̄T ·gSTC > 0, Proposition

1 establishes a strictly increasing relationship between λ̃
T
(x) and h̃T (x). Since we know

that h̃T (x) is strictly decreasing, this property carries over to λ̃
T
(x). For the case gUI −

h̄T ·gSTC = 0, Proposition 1 establishes that hours are unrelated to λ. Consequently, here

we need to use a different approach to show that λ̃
T
(x) is strictly decreasing. Equation

(20) implies log(λ) = σ[log(Γ) − log(Ω)]. Since hours are independent of x in this case,

we have

d

dx
log

(
λ̃
T
(x)

)
= σ

[
Γn
Γ

− Ωn

Ω

]
d

dx
ñT (x) = −σ1− ψ

ψ

Γn
Γ

d

dx
ñT (x),

where the second equality uses first-order condition (26). This expression is strictly

negative, since ψ ∈ (0, 1), Γn > 0, and d
dx
ñT (x) > 0.

Since ñT (x) is strictly increasing, we can determine the unique threshold profitability

level xTN at which the employment constraint (N) becomes binding. If limx→0 n
T (x) ≥ 1,

let xTN = 0. If limx→∞ nT (x) ≤ 1, let xTN = +∞. Otherwise, let xTN be the unique level of

x that satisfies ñT (x) = 1.

So far we have studied the relaxed problem without constraints (N) and (MHR).

Next, we modify this problem by imposing the employment constraint (N) with equality.

Let h̃TN(x) denote the level of hours that maximizes G(1, h, x). We will show that h̃TN(x)

is strictly increasing. This is the case if Ghx > 0. Evaluated at n = 1, the sign of Ghx

coincides with the sign of

f ′Ω− Ωhf = f ′ [xf − τh+ (h̄− h)gSTC
]
− [xf ′ − τ − gSTC ] f
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= f ′h̄gSTC + [f − f ′h] · [τ + gSTC ],

where the first equality substitutes Ω and Ωh, and the second equality exploits cancella-

tions. The resulting expression is strictly positive, so h̃TN(x) is indeed strictly increasing

in x.

As the final preliminary step, we need to determine how employment varies when

constraint (MHR) is binding. Let n̂T (x, h) denote the level of employment that maximizes

G(n, h, x) for a given level of hours h. Above we established that Gnx > 0, hence n̂T (x, h)

is strictly increasing in x.

Using these preliminary results, we are ready prove the first two parts of the propo-

sition.

1. Across profitability levels with a slack employment constraint, hours and employ-

ment are given by h0(x) = h̃0(x) and n0(x) = ñ0(x), respectively. The employment

constraint becomes binding at x0N . Hours h0(x) are strictly decreasing since the

condition gUI − h̄T · gSTC > 0 is satisfied for T = 0, as gUI > 0. Employment

n0(x) is strictly increasing on (0, x0N). On (x0N ,+∞), employment n0(x) equals one.

Hours are given by h0(x) = h̃0N(x) on this interval and thus strictly increasing.

2. First, we determine the threshold x1MHR,L. Consider the decreasing function h̃1(x).

If limx→x1N
h̃1(x) ≥ gMHRh̄, set x1MHR,L = x1N . If limx→0 h̃

1(x) ≤ gMHRh̄, set

x1MHR,L = 0. If neither of these two conditions is satisfied, then set x1MHR,L to

the unique level of x ∈ (0, x1N) that satisfies h̃1(x) = gMHRh̄. Next, we deter-

mine the threshold x1MHR,H . Consider the strictly increasing function h̃1N(x). If

limx→x1N
h̃1N(x) ≥ gMHRh̄, let x1MHR,H = x1N . If limx→∞ h̃1N(x) ≤ gMHRh̄, let

x1MHR,H = ∞. Otherwise, let x1MHR,H be the unique level of x ∈
(
xN1 ,∞

)
that

satisfies h̃1N(x) = gMHRh̄. Having constructed these thresholds, we have

(
h1(x), n1(x)

)
=



(
gMHRh̄, n̂

1
(
x, gMHRh̄

))
for x ∈

(
0, x1MHR,L

)
,(

h̃1(x), ñ1(x)
)

for x ∈
(
x1MHR,L, x

1
N

)
,(

h̃1N(x), 1
)

for x ∈
(
xN1 , x

1
MHR,H

)
,(

gMHRh̄, 1
)

for x ∈
(
x1MHR,H ,+∞

)
.

The properties of the functions n̂1
(
x, gMHRh̄

)
, h̃1(x) , ñ1(x), and h̃1N(x) imply that

h1(x) and n1(x) vary with profitability as stated in the proposition.
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For the third part of the proposition, we begin by establishing some preliminary results,

once again starting with the solution to the relaxed problem without the constraints (N)

and (MHR), that is, the functions h̃T (x) and ñT (x). So far, we have only defined these

functions for T ∈ {0, 1}. For the argument that follows, it is convenient to extend the

definition to T ∈ [0, 1], letting take-up vary continuously. We will show that if h̃0(x) ≤ h̄,

then h̃T (x) is strictly decreasing in T for T ∈ [0, 1], which in turn implies h̃1(x) < h̃0(x).

Using that ΩT = n(h̄−h)gSTC , ΩnT = (h̄−h)gSTC , and ΩhT = −ngSTC , second derivatives

involving take-up are

GnT =
Ω− Ωnn

Ω2
(h̄− h)gSTC ,

GhT = −Ω + Ωh(h̄− h)

Ω2
ngSTC .

To show that h̃T (x) is strictly decreasing in T , we need to show that

−GnnGhT +GnhGnT

is strictly negative. Substituting the four second derivatives into this expression and

dropping the denominators Ω2, we obtain

−
(
x|f ′′|h2Ω + (1− ψ)(Ωn)

2
) (

Ω + Ωh(h̄− h)
)
ngSTC

− (x|f ′′|nhΩ + (1− ψ)ΩnΩh) (Ω− Ωnn) (h̄− h)gSTC .

Exploiting cancellations, this reduces to

−gSTC
{
x|f ′′|hnΩ

[
(h̄− h)(Ωhh− Ωnn) + Ωh̄

]
+ (1− ψ)ΩΩn

[
Ωnn+ Ωh(h̄− h)

]}
.

Equation (30) implies that hΩh − nΩn is nonnegative. Consequently, if h ≤ h̄, then the

preceding expression is strictly negative. Now suppose that h̃0(x) ≤ h̄. It follows that

h̃T (x) is strictly decreasing in T at T = 0, and this in turn ensures that h̃T (x) remains

below h̄ as T increases towards one. It follows that h̃1(x) < h̃0(x).

Next, we modify the preceding problem by imposing the employment constraint (N)

with equality. The optimal level of hours in this problem is h̃TN(x), now defined for

T ∈ [0, 1]. Hours h̃TN(x) are strictly decreasing in T if GhT < 0. Now suppose that

h̃0N(x) ≤ h̄. Then the condition GhT < 0 is satisfied. Thus h̃TN(x) remains below h̄ as T
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increases towards one. Consequently, h̃1N(x) < h̃0N(x).

Using this preliminary results, we can prove part 3 of the proposition:

3. If h0(x) > gMHRh̄, then the result follows immediately from the MHR constraint,

which implies that h1(x) ≤ gMHRh̄. So we only need to examine the case h0(x) ≤
gMHRh̄. Here there are four cases to consider. First, suppose x ≤ min[x0N , x

1
N ].

Then h0(x) = h̃0(x). Since h̃0(x) ≤ gMHRh̄ ≤ h̄, the preliminary result established

above implies h̃1(x) < h̃0(x). Thus the MHR constraint is not binding, and h1(x) =

h̃1(x) < h0(x). Second, consider x ≥ max[x0N , x
1
N ]. Then h0(x) = h̃0N(x). Since

h0N(x) ≤ gMHRh̄ ≤ h̄, the preliminary result established above implies h̃1N(x) <

h̃0N(x). Thus the MHR constraint is not binding, and h1(x) = h̃1N(x) < h0(x).

Third, suppose that x1N < x0N and consider x ∈ [x1N , x
0
N ]. Then h0(x) = h̃0(x).

Since h̃0 is decreasing, we have h̃0(x) ≥ h̃0(x0N) = h̃0N(x
0
N). This means that

h̃0N(x
0
N) ≤ gMHRh̄ ≤ h̄, so we can appeal to the preliminary result established

above to conclude that h̃0N(x
0
N) > h̃1N(x

0
N). Since h̃1N is increasing, it follows that

h̃1N(x
0
N) ≥ h̃1N(x). Thus the MHR constraint is not binding at x, and h1(x) =

h̃1N(x) < h0(x). Fourth, suppose that x0N < x1N and consider x ∈ [x0N , x
1
N ]. Here

h0(x) = h̃0N(x). Since the function h̃
0
N is strictly increasing, it follows that h̃0N(x) ≥

h̃0N(x
N
0 ) = h̃0(xN0 ). This implies that h̃0(xN0 ) ≤ gMHRh̄ ≤ h̄, hence the preliminary

result established above implies that h̃0(xN0 ) > h̃1(xN0 ). Since the function h̃1 is

decreasing, it follows that h̃1(xN0 ) ≥ h̃1(x). Thus the MHR constraint is not binding

at x, and h1(x) = h̃1(x) < h0(x).

Proposition 5

As a first step, we examine how the maximized value of the objective conditional on

take-up varies with profitability x. For given x and T , the optimal value of the tuple

(cw(x), cb(x), n(x), h(x)) must maximize

n(x)u(cw(x), h(x)) + (1− n(x))u(cb(x), 0)

+ λ∗
{
xf(n(x)h(x))− τn(x)h(x) + (1− n(x))gUI + n(x)

(
h̄− h(x)

)
T · gSTC

− n(x)cw(x)− (1− n(x))cb(x)
} (31)

subject to the constraints (N) and (MHR). The corresponding optimal values of labor

inputs are hT (x) and nT (x). Let UT (x) denote the associated maximized value of objec-
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tive (31). The optimal take-up decision T ∗(x) must maximize UT (x). By the envelope

theorem, we have
dUT

dx
(x) = λ∗f

(
nT (x)hT (x)

)
. (32)

Having established this preliminary result, we are ready to prove the proposition. The

proof proceeds by sequentially analyzing the three regions (0, x1N ], [x
1
N , x

0
N ], and [x0N ,+∞),

thereby determining the location of the threshold xT .

First, consider the interval (0, x1N ]. According to Proposition 3, both h0(x) and h1(x)

are constant over this interval. Furthermore, for both T = 0 and T = 1, employment is

obtained by substituting hours into equation (19). Using the latter relationship to solve

for nT (x)hT (x) yields

nT (x)hT (x) = (f ′)−1

(
AT

x

)
=

(
α
x

AT

) 1
1−α

(33)

where AT is a constant that depends on take-up T , and the second equality uses the

assumption f(nh) = (nh)α, which implies (f ′)−1(y) = (α/y)1/(1−α). Consequently, using

equation (32) we obtain

d

dx

[
U1(x)− U0(x)

]
= λ∗

(
α
x

A1

) α
1−α

[
1−

(
A1

A0

) α
1−α

]
.

The sign of the right-hand side does not depend on x. Furthermore, UT (0) = u(cb(λ
∗), 0)+

λ∗ [gUI − cb(λ
∗)] is independent of T . Consequently, if A1 > A0, then U1(x) < U0(x) for

all x ∈ (0, x1N ]. We set xT = 0 in this case. Below we show that no take-up is optimal at

all levels of profitability in this case. If A1 < A0, then U1(x) > U0(x) on (0, x1N ], and the

threshold xT will lie to the right of this interval.

The case A1 = A0 can also arise as part of the optimal solution. In this case, given λ∗,

the firm is indifferent between take-up and no take-up at any given level of x ∈ (0, x1N ]. At

the same time, the budget constraint requires that, across profitability levels, a specific

expected value of employment must be allocated to take-up. One optimal choice is to

choose a threshold xT ∈ [0, x1N ] and set T ∗(x) = 1 on (0, xT ] and T ∗(x) = 0 on (xT , x1N ].

We proceed with this choice, and the precise value of xT is then determined by the budget

constraint.

Next, consider the interval [x1N , x
0
N ]. Here we need to consider two cases, depending

on the results for the interval (0, x1N ]. First, if U
1(x) ≤ U0(x) on the interval (0, x1N ], then
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it is clear that take-up remains inferior on [x1N , x
0
N ]: if the employment constraint were

not binding for take-up, then the analysis for the interval (0, x1N ] would directly extend

to [x1N , x
0
N ], and the binding employment constraint makes take-up even less attractive.

Second, if U1(x) > U0(x), then there are two possibilities. First, take-up may remain

optimal on the entire interval [x1N , x
0
N ]. Second, no take-up may be optimal on part of

this interval. Next, we show that if there is a switch to no take-up somewhere within

this interval, then no take-up remains optimal after this switch. So suppose there is a

profitability level x̃T ∈ [x1N , x
0
N ] such that U1(x̃T ) = U0(x̃T ). Using equation (32) and

the fact that n1(x) = 1 on [x1N , x
0
N ], we have

d

dx

[
U1(x)− U0(x)

]
= λ∗

[
f
(
h1(x)

)
− f

(
n0(x)h0(x)

)]
. (34)

Since we are in the case in which U1(x) > U0(x) on
(
0, xN1

]
, we know that this derivative is

strictly positive at x = x1N . To permit U1(x̃T ) = U0(x̃T ), this derivative must turn strictly

negative somewhere between x1N and x̃T . Consequently, there must exist a profitability

level xD ∈ [x1N , x̃T ] such that

h1(xD) < n0(xD)h
0(xD). (35)

Now consider x ∈ [xD, x
0
N ]. Equation (33) implies

(
x

xD

) 1
1−α

n0(xD)h
0(xD) = n0(x)h0(x). (36)

Using the notation from the proof of Proposition 3, let h̃TN(x, λ
∗) denote the solution to

equation (15). Using the assumption f(h) = hα, equation (15) can be written as

h = (αx)
1

1−α

[
(λ∗)−

1
σ V (h) + τ + T · gSTC

]− 1
1−α

.

Thus

h̃1N(x, λ
∗) =

(
x

xD

) 1
1−α

(λ∗)−
1
σ V

(
h̃1N(xD, λ

∗)
)
+ (τ + gSTC)

(λ∗)−
1
σ V

(
h̃1N(x, λ

∗)
)
+ (τ + gSTC)


1

1−α

h̃1N(xD, λ
∗)

<

(
x

xD

) 1
1−α

h̃1N(xD, λ
∗)
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where the strict inequality follows from the fact that h1N(x, λ
∗) is strictly increasing on

[x1N , x
0
N ], together with the fact that V (h) is strictly increasing in h. Since h1(x) =

min
[
h̃1N (x, λ∗) , gMHRh̄

]
and h1N(x, λ

∗) is strictly increasing, this inequality also holds

for h1(x):

h1(x) <

(
x

xD

) 1
1−α

h1 (xD) . (37)

Combining the two inequalities (35) and (37) with equation (36) yields

h1(x) < n0(x)h0(x)

for all x ∈ [xD, x
0
N ]. Since xD ≤ x̃T and U1(x̃T ) = U0(x̃T ), equation (34) implies

U1(x) < U0(x) for all x ∈ [x̃T , x
0
N ]. Thus there can only be one value x̃T in [x1N , x

0
N ]

such that U1(x̃T ) = U0(x̃T ). If such a value exists, we set the threshold xT to this value

x̃T . If such a value does not exist, we are in the case in which take-up remains optimal

throughout the interval [x1N , x
0
N ].

Finally, consider the interval [x0N ,+∞). Over this range

d

dx

[
U1(x)− U0(x)

]
= λ∗

[
f
(
h1(x)

)
− f

(
h0(x)

)]
. (38)

This expression is strictly negative, since h1(x) < h0(x) according to Part 3 of Proposition

3. Again we need to consider two cases, depending on the results obtained for the intervals

(0, x1N ] and [x1N , x
0
N ]. In the first case, we have already set a threshold xT ∈ [0, x0N ] such

that T ∗(x) = 0 on (xT , x
0
N ]. In this case inequality (38) implies that no take-up T ∗(x) = 0

is also optimal on [x0N ,+∞). In the second case, we have not yet determined a threshold

xT , and T
∗(x) = 1 is optimal on (0, x0N ]. In the latter case, inequality (38) implies that

there is at most one profitability level x̃T in [x0N ,+∞) such that U1 (x̃T ) = U0 (x̃T ). If

such a level exists, we set xT = x̃T . If such a level does not exist, we set xT = +∞.

With this definition of xT , T
∗(x) = 1 is optimal on [x0N , xT ], and T

∗(x) = 0 is optimal on

(xT ,+∞).

Summarizing the results from analyzing the three intervals, we have determined a

threshold xT ∈ [0,+∞] such that T ∗(x) = 1 is optimal on (0, xT ] and T ∗(x) = 0 is

optimal on xT ∈ (xT ,+∞).
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B Sensitivity Analysis

In this appendix we show that the the main conclusions obtained in the computational

experiments of Section 4 are not sensitive with respect to changes in parameters and

targets.

Recall that the parameters σ, α, υ and σx were chosen independently, while v0, gUI ,

and ψ were pinned down by targets for temporary layoffs, the replacement rate of UI

and the Frisch elasticity. For each parameter in the first group we choose a low and a

high value. Similarly, for each of the three targets we choose a low and a high value. We

vary one parameter or target at a time, and for each deviation from the benchmark we

recalibrate the model and repeat the welfare analysis.

Table 8 and Table 9 display the results for the case of perfect PI and no PI respec-

tively. We omit the results for the production function parameter α, since changing this

parameter has very little impact on the welfare effects associated with STC. We also do

not report results for the fraction of unattached workers, since it plays a role very similar

to that of risk aversion σ.28 For each change in one of the remaining parameters and

targets, we present the results in a pair of rows. The first of these rows, labeled ‘Policy’,

displays the values of the policy instruments for the respective policy experiment. The

second row, labeled ‘Welfare’, displays welfare relative to the experiment g∗UI in con-

sumption equivalents. The first pair of rows provides this information for the benchmark

calibration.

B.1 Perfect Private Insurance

Our main results of Section 4.2 are robust with respect to these changes in parameters

and targets.

First, introducing STC can always improve on UI, with sizable welfare gains varying

between 0.1% and 1.2% for experiment g∗STC |g∗UI and between 0.1% and 2.2% for experi-

ment (gSTC , gUI)
∗. When we exclude the experiments involving a change in the degree of

risk aversion, these gains vary between 0.2% and 0.5% and 0.5% and 0.8% respectively.

Naturally, the degree of risk aversion is a key determinant of the magnitude of welfare

gains. With high risk aversion, the motivation to insure unattached workers is stronger,

28The benefit of UI is to insure this group of workers, and the magnitude of this benefit is determined
by risk aversion in conjunction with the size of this group.
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leading to a higher optimal level of g∗UI . Then, the composition of labor inputs is more

distorted, leaving more room for STC to mitigate these distortions.

Second, optimal levels of STC are markedly less generous than UI, and the results

for the experiment ḡmax
STC |g∗UI show that introducing STC with the same generosity as gUI

results in large welfare losses.

Another robust result is that the welfare gains from STC are about equally distributed

between the direct gain of introducing the STC for a given level of UI and the additional

gain from jointly optimizing the levels of UI and STC.

Finally, introduction of a minimum hours reduction does not generally lead to sizable

welfare improvements. In most experiments, the gains are less than a third of welfare

gains achievable by STC alone and negligible for some experiments.

B.2 No Private Insurance

As in the benchmark without PI, welfare gains from the introduction of STC are generally

negligible. Small but non-negligible gains arise for high risk aversion and a low targeted

replacement rate. However, in both cases the welfare gains remain an order of magnitude

below the gains in the corresponding sensitivity analysis under perfect PI.
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C Redundancy of Experience Rating

The redundancy of experience rating is a feature our model shares with those of BW and

WH, and it applies even to their models in which attached agents are heterogeneous in

that some are workers while others are employers. The reason for this redundancy is the

absence of imperfections in the risk sharing contract among agents attached to a firm.

First, we establish redundancy for a version of our model in which both UI benefits and

experience rating are allowed to differentiate between attached and unattached workers.

Following BW and WH, experience rating imposes a tax on a firm which amounts to

fraction e ∈ [0, 1] of the total benefits received by the workers attached to that firm. We

also allow for experience rating of unattached workers with factor eν ∈ [0, 1]. 29 With

experience rating, the net benefit schedule for firms (3) becomes

(1− e)
[
(1− n)gUI + nI

[
h ≤ gMHRh̄

]
·
(
h̄− h

)
· gSTC

]
− τnh (39)

and the benefit received by unattached workers is (1− eν)gνUI where g
ν
UI is the UI benefit

level for unattached worker, which for now is allowed to differ from gUI . It is immediately

clear that this system is equivalent to an alternative system (distinguished by a check)

given by ǧUI = (1− e)gUI , ǧSTC = (1− e)gSTC , ě = 0, ǧνUI = (1− eν)gνUI , and ě
ν .

In our model without experience rating, we restrict STC and UI to be uniform. As dis-

cussed in the text, this should be understood as a restriction on effective subsidies. Oth-

erwise this restriction has no content, as any differentiation can be implemented through

experience rating. Next, we show that experience rating is redundant under the assump-

tion that the effective subsidy cannot differentiate between attached and unattached

workers:

(1− e)gUI = (1− eν)gνUI .

The system consisting of ǧUI , ǧSTC , and ǧνUI and no experience rating continues to be

equivalent. Moreover, it satisfies ǧUI = ǧνUI , so the UI benefit does not differentiate

between attached and unattached workers.

29A natural level for this is zero, given that these workers are not attached to a firm. However, one can
also assume that these workers were previously attached to some firm, and that the government imposes
the experience-rating tax on the owners of that firm. In our model of owner-operators, it is internally
consistent to assume that unattached workers own the firm from which they became unattached. In
their role as owners, they are liable for the experience-rating tax induced by the benefits they receive in
their role as workers.
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