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Abstract

On average, “young”people underestimate whereas “old”people overestimate

their chances to survive into the future. We adopt a Bayesian learning model

of ambiguous survival beliefs which replicates these patterns. The model is em-

bedded within a non-expected utility model of life-cycle consumption and saving.

Our analysis shows that agents with ambiguous survival beliefs (i) save less than

originally planned, (ii) exhibit undersaving at younger ages, and (iii) hold larger

amounts of assets in old age than their rational expectations counterparts who

correctly assess their survival probabilities. Our ambiguity-driven model therefore

simultaneously accounts for three important empirical findings on household sav-

ing behavior.
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1 Introduction

One important element of life-cycle models of consumption and saving is the process of

how individuals form and revise beliefs about their life expectancy when they grow older.

In line with Muth’s (1961) rational expectations paradigm it is common in the literature

to consider expected utility maximizing agents whose updated subjective beliefs coincide

with objective conditional survival probabilities. Only recently, researchers have focused

on subjective assessments of survival probabilities which deviate from projected life-

table survival rates on the aggregate level.1 According to the Health and Retirement

Study (HRS), on average, younger people strongly underestimate their (relatively high)

probability to survive to some target age. At the same time older people strongly

overestimate their lower survival probability. Such patterns can neither be reconciled

with the rational expectations paradigm nor with models of rational Bayesian learning

according to which subjective beliefs converge to objective probabilities when people

gain more experience, i.e., grow older.

In addition, recent empirical findings on household saving behavior proved to be

puzzling for the standard “workhorse”-life-cycle model à la Modigliani and Brumberg

(1954) and Ando and Modigliani (1963) which assumes rational agents with perfect

foresight throughout their life. For example, Laibson et al. (1998) and Bernheim and

Rangel (2007) report large gaps between self-reported behavior and self-reported plans

and/or preferences. Generally, people save less for retirement than actually planned

(Choi et al. 2006). Such phenomena of dynamic inconsistency have been analyzed

within models of hyperbolic time-discounting and bounded self-control. Building on

the early work by Strotz (1955) and Pollak (1968), Laibson et al. (1998) find that

exponential consumers save more than hyperbolic consumers. Besides these tendencies

for undersaving and dynamically inconsistent behavior a well-known puzzle within the

standard life-cycle framework is that people hold large amounts of assets still late in life

and dissave less at the end of their life than predicted by the standard model (see, e.g.,

De Nardi et al. 2010; Hurd and Rohwedder 2010; Lockwood 2013).

This paper investigates in how far the aforementioned mistakes about assessing the

prospect of survival may explain these empirical findings on saving behavior. To this

purpose we merge a model of subjective survival belief formation with an otherwise

standard life-cycle model. To model biases in survival beliefs as reported in the HRS,

we adopt a simplified version of the Bayesian learning model under ambiguity developed

by Ludwig and Zimper (2013). Agents of this learning model are decision makers whose

1For early contributions on the difference between subjective survival beliefs and objective survival

probabilities see, e.g., Manski (2004), McFadden et al. (2005) and references therein.
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preferences can be represented by Choquet expected utility (CEU) theory (Schmeidler

1989; Gilboa 1987) or, equivalently, by cumulative prospect theory (CPT) (Tversky and

Kahneman 1992; Wakker and Tversky 1993).2 More specifically, we model ambiguous

survival beliefs as non-additive probabilities in the sense of Chateauneuf et al. (2007)

which take individuals’ psychological attitudes into account; notably ambiguity with

respect to objective survival probabilities and a degree of relative optimism with which

this ambiguity is resolved. Because we derive updated survival beliefs from a model of

Bayesian learning under ambiguity, our model goes beyond a mere static application of

CPT or CEU theory to survival beliefs as, e.g., in Bleichrodt and Eeckhoudt (2006) and

in Halevy (2008). In contrast to these ad hoc CPT models, which fix a unique prob-

ability weighting function, our axiomatic approach towards Bayesian updating of CEU

preferences3 gives rise to a sequence of age-dependent probability weighting functions

when we transform objective survival probabilities into subjective beliefs.

Based on our dynamic model of ambiguous survival beliefs, we use an otherwise stan-

dard stochastic life-cycle consumption model to compare the consumption and saving

behavior of CEU agents with rational expectations (RE) agents who are nested within

our approach as a special case. Whenever CEU agents do not reduce to RE agents,

our life-cycle maximization problem gives rise to dynamically inconsistent behavior. We

restrict attention to ‘naive’agents. In contrast to a ‘sophisticated’agent, who is fully

aware of her dynamically inconsistent behavior, a naive agent does not anticipate that

her future-selves have strict incentives to deviate from her ex ante optimal consumption

plan. To consider naive rather than sophisticated agents is in line with empirical evi-

dence that supports the relevance of the former (cf. O’Donoghue and Rabin (1999) and

the literature cited therein).

Qualitative analysis for a simple three-period life-cycle model– relegated to the sup-

plementary Appendix C– shows that naive CEU agents exhibit undersaving behavior

relative to their RE counterparts if they suffi ciently underestimate objective survival

probabilities at young ages. Furthermore, at older ages they need to moderately over-

estimate their survival chances in order to save less than originally planned. Finally,

CEU agents save more out of cash on hand in the intermediate model period than the

corresponding RE agent. However, whether asset holdings in the final period are higher

for the CEU agent depends on the interplay between underestimation at younger ages

and overestimation at older ages. Whether these conditions hold and how relevant the

biases in beliefs are for generating saving puzzles are quantitative questions.

2Restricted to outcomes which do not include losses but only gains (as in our model), CPT is identical

to CEU theory.
3See, e.g., Gilboa and Schmeidler (1993), Eichberger et al. (2007), Zimper and Ludwig (2009) and

Zimper (2012) for related work on the decision theoretic foundations.
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To address these quantitative questions we calibrate the stochastic quantitative life-

cycle model to the data. At this stage, the strength of our structural survival beliefs

model comes into play because it allows us to characterize the entire survival beliefs

distribution while there are only specific data points available from the HRS. We find

that underestimation of survival probabilities at younger ages leads to undersaving for

retirement and that dynamic inconsistency implies lower savings than originally planned.

Moreover, due to the overestimation of survival probabilities at older ages, CEU agents

decumulate assets at lower rates and eventually exhibit higher asset holdings than their

RE counterparts. Our quantitative findings can be compressed in the following numbers:

CEU agents with ambiguous survival beliefs at working age have a saving rate of 21.9%

on average compared to a rational expectations model with an average saving rate of

22.8%. The realized saving rate is 2.8 percentage points lower than what the CEU

agent at age 20 actually planned to save. Our model predicts average asset holdings

at age 85 (95) of 46.4% (23.5%) of the assets at age 65 which is 11.5 (15.8) percentage

points higher than respective values for rational agents.

These findings support our modeling approach. However, there still exists a gap be-

tween model-generated and empirical saving rates and asset holdings (cf. our discussion

in Sections 5.3- 5.4). Of course, this does not come as a surprise because it is implausi-

ble that a stylized model of ambiguous survival beliefs alone can fully explain people’s

life-cycle decisions.

Finally, observe that the standard explanation for time inconsistency and undersav-

ing at young ages in the form of hyperbolic time discounting models (Laibson et al.

1998; Angeletos et al. 2001) cannot account for high old-age asset holdings. Similar,

the standard explanations for insuffi cient asset decumulation at old ages in the form

of bequest (Hurd 1989; Lockwood 2013) and precautionary savings motives (Palumbo

1999; De Nardi et al. 2010) alone cannot explain undersaving at young ages. Our model

of ambiguous survival beliefs adds to these existing explanations whereby it simultane-

ously generates all three stylized findings; namely, (i) time inconsistency of agents, (ii)

undersaving at younger ages and (iii) high asset holdings at old age.

The remainder of our paper is organized as follows. Section 2 motivates and presents

our first building block, a parsimonious model of ambiguous survival beliefs. In Section 3

we combine this model with a quantitative multi-period stochastic life-cycle model. Cal-

ibration is outlined in Section 4 and results of the quantitative analysis are presented in

Section 5. Finally, Section 6 concludes our analysis. Appendix A recalls formal defini-

tions from Choquet decision theory. Appendix B sketches the construction of ambiguous

survival beliefs through a model of Bayesian learning under ambiguity by Ludwig and

Zimper (2013). Supplementary Appendix C contains the analytical three-period model.
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2 Ambiguous Survival Beliefs

2.1 Biases in Survival Beliefs

As point of departure, consider the subjective survival beliefs elicited in the Health

and Retirement study (HRS). Respondents are asked about their assessment of the

probability to survive from some interview age up to a specific target age. Target age is

mostly 10 to 15 years in advance, see Table 1.

Table 1: Interview and Target Age

Age at Interview Target Age

≤ 69 80

70− 74 85

75− 79 90

80− 84 95

85− 89 100

Source: RAND HRS Data Documentation.

Figure 1 shows aggregated data from the HRS by plotting average age-specific biases

in survival beliefs– the difference between the respective average subjective belief and the

average objective data– for three waves of the HRS between 2000 and 2004.4 We observe

that relatively “young”– younger than age 65-70– respondents underestimate whereas

relatively “old”– above age 70– respondents overestimate their chances to survive into

the future. For example, an average 65 year old women underestimates her objective

probability to become 80 years by about 20 percentage points. Respondents between

ages 85 and 89 in the sample exhibit an average overestimation by about 15 to 20

percentage points.

This age-specific pattern of subjective survival beliefs is a well-established stylized

fact and has been confirmed by various other studies using different data sets. Hammer-

mesh (1985) found that subjective survival rate functions are generally flatter than their

objective counterpart implying underestimation at younger ages and overestimation at

older ages. Similar findings have been described by Elder (2013) for the US and by

Peracchi and Perotti (2010) for European countries using the Survey of Health, Ageing

4Objective data are based on cohort life-tables so that future trends in life expectancy are appropri-

ately taken into account. Ludwig and Zimper (2013) also show that neither cohort effects nor selectivity

issues are a concern. Furthermore, these patterns are robust to focal point answers at probabilities

of 0%, 50% and 100%.
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Figure 1: Relative difference of subjective survival probabilities and cohort data
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Notes: This graph shows deviations in percentage points of subjective survival probabilities from objec-

tive data. Objective survival rates are based on cohort life table data. Future objective data is predicted

with the Lee-Carter procedure (Lee and Carter 1992). Each bar depicts the difference of unconditional

probabilities to survive to a specific target age, cf. Table 1.

Source: Own calculations based on HRS, Human Mortality Database and Social Security Administra-

tion data.

and Retirement in Europe (SHARE). Wu et al. (2013) highlight a related fact in aggre-

gate data using the 2011 Australian “Retirement Plans and Retirement Incomes: Pilot

Survey”which has a richer set of survival questions than the HRS. These data indicate

that people of a certain (interview) age underestimate probabilities in the near future

whereas they overestimate survival rates for the distant future.

The biases of subjective survival perceptions from objective life-table data shown

in Figure 1 are expected to have significant implications for household’s consumption

and saving decisions. A number of recent studies confirms this. For example, Salm

(2010) estimates that a 1 percent increase in the subjective probability of mortality

reduces annual future consumption of non-durable goods by around 1.8 percent. Bloom

et al. (2006) find that an increased subjective survival probability leads to higher wealth

accumulation thereby confirming results of Hurd et al. (1998).

Incorporating subjective survival beliefs in structural dynamic household models

however requires knowledge of the entire probability distribution while, in general, there
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are only few data points available. In the HRS, for example, only specific unconditional

average subjective survival probability for each interview age is observed. A number of

recent studies therefore estimate subjective survival beliefs functions by assuming spe-

cific hazard functions in order to adjust the aggregate differences of subjective data with

the objective counterpart, either by a constant “subjective scaling factor”(e.g., Gan et

al. 2005), by assuming distributions of subjective scaling factors (e.g., Bissonnette et al.

2011; Khwaja et al. 2007), or by allowing the adjustment factor to vary with target age

(e.g., Wu et al. 2013). We add to this literature by using an ambiguity-driven model

which has an axiomatic decision theoretic foundation and provides a structural frame-

work to interpret as well as to inter- and extrapolate the data. The next Subsection

describes this approach.

2.2 Parsimonious Model of Ambiguous Survival Beliefs

The biases in Figure 1 cannot be accommodated by a standard Bayesian learning model

where the agent learns more relevant (statistical) information about her future survival

chances as she grows older. Such a standard model would imply convergence to the

objective probability.5 To ‘explain’the biases in Figure 1, we follow Ludwig and Zimper

(2013) who set up a closed-form model of Bayesian learning under ambiguity within

the framework of CEU theory which gives rise to a parsimonious notion of ambiguous

survival beliefs.

Technically speaking, this model is based on Choquet decision theory such that

survival beliefs are modeled as conditional neo-additive capacities (Chateauneuf et al.

2007) which are updated in accordance with the Generalized Bayesian update rule (Pires

2002; Eichberger et al. 2007). Neo-additive capacities are used in the literature6 to

approximate inversely S-shaped probability weighting functions typically elicited for

CPT (cf., e.g., Tversky and Kahneman 1992; Wu and Gonzalez 1996; 1999). More

importantly, in contrast to additive probabilities, the conditional neo-additive survival

beliefs constructed in this paper can replicate the patterns of Figure 1 because they do

not necessarily converge through Bayesian updating to the objective probabilities. For

the reader’s benefit we present a mathematically rigorous review of Choquet decision

theory with neo-additive capacities in Appendix A and of the Ludwig and Zimper (2013)

learning model in Appendix B. In what follows, we only restate the learning model’s

parsimonious characterization of ambiguous survival beliefs.

5This is implied by consistency results for Bayesian estimators. The seminal contribution is

Doob (1949).
6See, e.g., Wakker (2010), Abdellaoui et al. (2011), and Ludwig and Zimper (2013).
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Fix some T ≥ h ≥ 0 with the interpretation that the agent perceives it as possible to

live until the end of period T whereas she perceives it as impossible to live longer than

T . Denote by δ ∈ [0, 1] an initial degree of ambiguity and by λ ∈ [0, 1] a psychological

bias parameter which measures whether the agent resolves her ambiguity through over-

or rather through under-estimation of the true probability. The following result is based

on Ludwig and Zimper (2013) and derived in some detail in Appendix B7:

Proposition 1. Denote the objective probability to survive from k to t by ψk,t and fix

age-independent parameters δ, λ ∈ [0, 1]. The h-old agent’s age-dependent ambigu-

ous belief to survive from age k to target age t, νhk,t, is given by

νhk,t = δh · λ+ (1− δh) · ψk,t

such that

δh =
δ

δ + (1− δ) · 1
1+
√
h

for ψk,t ∈ (0, 1) and νhk,t = ψk,t for ψk,t ∈ {0, 1}.

For all ψk,t ∈ (0, 1), the h-old agent’s belief to survive from age k to some target

age t is thus formally described as an age-dependent weighted average of the objective

survival probability with weight 1 − δh and the psychological bias parameter λ with

weight δh. In the absence of ambiguity, i.e., δ = 0, we have for all h that νhk,t = ψk,t
so that all ambiguous survival beliefs reduce to objective survival probabilities and the

standard rational expectations approach is nested as a special case. For any positive

ambiguity, i.e., δ > 0, however, the dynamics of the model imply that agents exhibit more

pronounced ambiguity attitudes with increasing age. A stylized representation of the

model’s dynamics is contained in Figure 2. Interior objective survival rates ψh ∈ (0, 1)

are mapped into corresponding subjective survival rates νh by a linear transform which

is (i) flatter than the 45-degree line and (ii) becomes flatter with increasing age h.

Furthermore, the νh-line intersects with the 45-degree line at the relative optimism

parameter λ. Note, that both the underestimation and the overestimation of survival

probabilities become more pronounced with higher ambiguity. Increasing ambiguity with

7In fact, the model used here is a simplified version of the Ludwig and Zimper (2013) model, which

merges a standard rational Bayesian learning (RBL) model (with some initial biases in prior beliefs in

the additive part of the model) with the model of ambiguous survival beliefs. For sake of simplicity, we

here ignore the initial bias in the RBL part so that any bias between objective survival probabilities

and subjective beliefs is exclusively ambiguity-driven.
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age inherent in our model together with lower objective survival rates for older agents

(lower than λ which is consistent with our empirical estimates, cf. Subection 4.3) implies

an increasing importance of overestimation of survival probabilities.

Figure 2: Dynamics of the Subjective Survival Belief Model

Notes: This graph depicts the subjective survival belief ν compared to the objective counterpart ψ.

Panel (a) shows the case for low ambiguity δ (young agent). The deviation from the 45-degree line

is only modest implying that both underestimation of high ψ̄ and overestimation of low ψ objective

probabilities are small. Panel (b) shows high ambiguity δ̄ (older agent). The subjective survival line is

more horizontal implying that under- and overestimation is more pronounced.

Bleichrodt and Eeckhoudt (2006) and Halevy (2008) also apply CPT probability

weighting functions to survival beliefs. Because these authors use constant (i.e., age-

independent) probability weighting functions, their decision theoretic approach falls un-

der rank dependent utility theory (RDU) (Quiggin 1981; 1982) according to which the

additive probability measure (and its Bayesian updates) of a probabilistically sophisti-

cated decision maker is transformed by a fixed weighting function.

The decision theoretic foundation of ambiguous survival beliefs by Proposition 1 goes

beyond RDU theory (and beyond probabilistic sophistication) because updating under

ambiguity implies the violation of Savage’s (1954) sure-thing principle in a Bayesian

learning context.8 More precisely, we construct in Appendix 2.3 age-dependent σ-

algebras Fh, h = 1, ..., T , which can be interpreted as different sources of Ellsberg-like

uncertainties in the sense of Wakker (2010) and Abdellaoui et al. (2011). Under this

interpretation, an agent of fixed age h can be described as an RDU (i.e., a probabilis-

tically sophisticated) decision maker such that the additive probability ψk,t has been

transformed into the neo-additive probability νhk,t by an age-specific probability weight-

ing function. However, across different ages, i.e., for different sources of Ellsberg-like
8For technical details see the Appendix and references therein.
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uncertainty, our decision maker is no longer probabilistically sophisticated so that her

preferences can no longer be descried by a given probability weighting function as in

RDU theory but rather by different probability weighting functions corresponding to

different ages.

2.3 Heuristic Interpretations of Age-increasing δh

The Bayesian learning model underlying Proposition 1 assumes that the flow of statistical

survival information is a standard filtration process so that the representative agent

receives more information when she grows older. In this environment of Bayesian learning

under ambiguity, more information coincides with “ex ante less likely”, i.e., “surprising”,

information to the effect that an ambiguity prone decision maker expresses even more

ambiguity in the face of more statistical information. As a formal consequence, ambiguity

in survival beliefs, as expressed by the δh parameter, increases with age.

Although the age-increasing δh is thus a rather mechanical consequence of the un-

derlying decision-theoretic assumptions, this formal feature captures the intuitive notion

that, as the objective risk of survival becomes less likely, agents attach less and less

weight to this objective probability. According to our estimates of δ and λ, presented in

Section 4, objective survival probabilities ψk,t decrease with age to values lower than λ,

cf. ψ in Figure 2. The model’s convergence property hence implies that survival rates

are overestimated eventually even when the initial degree of ambiguity, δ, is low. Over-

estimation at old age may result from the fact that people have survived the gamble

against death several times before. Consequently, one possible heuristic interpretation

of age-increasing δh might be that “people want to avoid a realistic assessment of their

encounter with death”.9

The concept of likelihood-insensitivity, introduced by Peter Wakker and coauthors

(cf., Wakker 2004; 2010; Abdellaoui et al. 2011), may provide an alternative heuristic

interpretation for the age-increasing δh of our model. These authors interpret δh not as

an ambiguity but rather as a cognitive parameter which reflects the empirical observation

that people do not suffi ciently distinguish between non-degenerate probabilities. E.g., an

extreme example for likelihood insensitivity are “fifty-fifty”probability assessments for

any uncertain event and its complement. Under this cognitive interpretation, likelihood

insensitivity– and not necessarily ambiguity– would increase with age. Given that old

people increasingly suffer from cognitive impairments, this alternative interpretation

9This interpretation is consistent with the observation of Kastenbaum (2000) who summarizes the

insights of psychological research on the reflection about personal death as follows: “There are divergent

theories and somewhat discordant findings, but general agreement that most of us prefer to minimize

even our cognitive encounters with death.”
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has some intuitive appeal. Despite this, we continue to interpret δh as age-dependent

ambiguity in the remainder of our analysis.

Regardless of the specific interpretation, we can conclude, at this point, that (i)

Proposition 1 is derived from sound (albeit strong) decision-theoretic assumptions and

(ii) the calibration of our parsimonious belief model will result in a nice fit to the HRS

data on subjective survival beliefs (cf. Section 5.1).

3 Quantitative Life-Cycle Model

This section merges our notion of ambiguous survival beliefs with a life-cycle model

where one period corresponds to one age year. Households live up to some maximum

age, T . We also model a realistic life-cycle income profile including stochastic and age-

specific labor productivity. In addition, a PAYG pension system is modeled assuming

a fixed date of retirement. We assume no annuity markets and a borrowing constraint.

These elements are included only in order to generate realistic endogenous life-cycle

consumption profiles. Borrowing constraints, stochastic labor income in combination

with impatience gives a hump-shaped consumption profile as we see it in the data.

Positive pension income implies that savings for retirement are not too large.

3.1 Demographics

We consider a large number of ex-ante identical agents (=households). Households be-

come economically active at age (or period) 0 and live at most until age T . The number

of households of age t is denoted by Nt. Population is stationary and we normalize

total population to unity, i.e.,
∑T

t=0Nt = 1. Households work full time during peri-

ods 1, . . . , tr− 1 and are retired thereafter. The working population is
∑tr−1

t=0 Nt and the

retired population is
∑T

t=tr
Nt.

We refer to age h ≤ t as the planning age of the household, i.e., the age when house-

holds make their consumption and saving plans for the future. At ages h = 1, . . . , T ,

households face objective risk to survive to some future period t. We denote corre-

sponding objective survival probabilities for all in-between periods k, h ≤ k < t, by ψk,t
where ψk,t ≤ 1 for all t ≤ T and ψk,t = 0 for t = T + 1. We think of survival risk as an

idiosyncratic risk which washes out at the aggregate level. Total population is therefore

constant and dynamics of the population are correspondingly given by Nt+1 = ψt,t+1Nt,

for N0 given.
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3.2 Endowments

There are discrete shocks to labor productivity in every period t = 0, 1, ..., , tr−1 denoted

by ηt ∈ E, E finite, which are i.i.d. across households of the same age. The reason for

stochastic labor productivity in our model is to impose discipline on calibration. For

sake of comparability, our fully rational model features standard elements as used in

numerous structural empirical studies (cf., Laibson et al. 1998; Gourinchas and Parker

2002 and references therein). By ηt = (η1, . . . , ηt) we denote a history of shocks and

ηt | ηh with h ≤ t is the history (η1, . . . , ηh, ..., ηt). Let E be the powerset of the finite set

E and Etr−1 be the σ-algebra generated by E,E, .... We assume that there is an objective

probability space
(
×tr−1
t=0 E,E

tr−1, π
)
such that πt(ηt | ηh) denotes the probability of ηt

conditional on ηh.

In addition, we assume productivity to vary by age where φt denotes age-specific

productivity which will be estimated from the data and results in a hump-shaped life

cycle earnings profile.

After retirement at age tr households receive a lump-sum pension income, b. Retire-

ment income is modeled in order to achieve a realistic calibration. Pension contributions

are levied at contribution rate τ .

Collecting elements, income of a household of age t is given by

yt =

{
ηtφtw (1− τ) for t < tr

b for t ≥ tr.

There are no annuity markets, an assumption which can be justified by the observed

small size of private annuity markets.10 We assume a fixed zero borrowing constraint

and a fixed interest rate r. With cash-on-hand given as xt ≡ at (1 + r) + yt the budget

constraint writes as

xt+1 = (xt − ct) (1 + r) + yt+1 ≥ 0.

Define total income as ytott = yt + rat, saving as st = ytott − ct and gross savings as assets
tomorrow, at+1.

3.3 Government

We assume a pure PAYG public social security system. Denote by χ the net pension

benefit level, i.e., the ratio of pensions to net wages. The government budget is assumed

10See Friedman and Warshawsky (1990). Observe that underestimation of survival beliefs extenuates

the annuity puzzle.
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to be balanced each period and is given by

τw
tr−1∑
t=0

φtNt = b
T∑
t=tr

Nt = χ (1− τ)w
T∑
t=tr

Nt. (1)

In addition, accidental bequests– arising because of missing annuity markets– are

taxed away at a confiscatory rate of 100%.11

3.4 CEU Preferences

Households face two dimensions of uncertainty, respectively risk, about period t con-

sumption. First, due to our assumption of productivity shocks, agents face a risky labor

income. Second, agents are uncertain with respect to their life expectancy. While we

model income risk in the standard objective EU way, we model uncertainty about life-

expectancy in terms of a CEU agent who holds ambiguous survival beliefs as stated in

Proposition 1.

Given the productivity shock history ηh, denote by c ≡ (ch, ch+1, ch+2...) a shock-

contingent consumption plan such that the functions ct, for t = h, h + 1, ..., assign to

every history of shocks ηt|ηh some amount of period t consumption. Denote by u (ct) the

agent’s utility from consumption at age t. We assume that utility is strictly increasing

in consumption and that the agent is strictly risk-averse, i.e., u′ (ct) > 0, u′′ (ct) < 0.

Expected utility of an h-old agent from consumption in period t > h contingent on the

observed history of productivity shocks ηh is then given as

Et [u (ct)] ≡ Et
[
u (ct) , π

(
ηt|ηh

)]
=
∑
ηt|ηh

u (ct) π
(
ηt|ηh

)
where we introduce Et [·] as a shortcut notation for the expectation operator with respect
to productivity shock ηt in period t, conditional on period h.

We assume additive time-separability and we add a raw time discount factor β =
1

1+ρ
.12 For any s ∈ {h, h+ 1, ..., T} and survival until period s, the agent’s von Neumann

Morgenstern utility (vNM) from a consumption plan c is then defined as

U (c (s)) = u(ch) +
s∑

t=h+1

βt−hEt [u (ct)] .

To model survival uncertainty of an agent of age h with respect to ambiguous survival

beliefs, we use the sequence of conditional neo-additive probability spaces (Ω,F , ν (· | h)),

11Revenue from this source is used for government consumption which is otherwise neutral.
12In line with Halevy (2008) and Andreoni and Sprenger (2012), we assume that time-preferences

cannot be reduced to preferences under uncertainty. To keep the formalism as transparent as possible,

we simply consider standard exponential time-discounting.
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h = 1, ..., T , which is mathematically rigorously constructed in Appendix B.3. Denote

by νh ≡ ν (· | h) the agent’s age-conditional neo-additive capacity and by ψs = ψ (·) the
objective probability to survive until age s.

In order to formalize utility maximization over life-time consumption with respect

to neo-additive probability measures, we henceforth describe an h-old agent as a CEU

decision maker who maximizes her Choquet expected utility from life-time consump-

tion with respect to νh. By Observation A.1 in Appendix A.1, this agent’s CEU from

consumption plan c with respect to νh is given as

E
[
U (c) , νh

]
= δh

[
λ sup
s∈{h,h+1,...}

U (c (s)) + (1− λ) inf
s∈{h,h+1,...}

U (c (s))

]
(2)

+ (1− δh) ·
T∑
s=h

[U (c (s)) , ψs] .

The Choquet expected value of a lifetime utility U (c) with respect to a neo-additive

capacity νh is a convex combination of the expected value of U with respect to some

additive probability measure ψs and an ambiguity part. In case there is some ambiguity,

i.e., δ > 0, parameter λ measures how much weight the decision maker puts on the least

upper bound of the range of U. Conversely, (1− λ) is the weight she puts on the greatest

lower bound. For these bounds we have for any c that

sup
s∈{h,h+1,...}

U (c (s)) = u(ch) +
T∑

t=h+1

βt−hEt [u (ct)] ,

inf
s∈{h,h+1,...}

U (c (s)) = u(ch),

i.e., the least upper bound consists of the discounted sum of utilities if survival where

one in every period while the greatest lower bound in this setting is utility if the agent

does not survive to the following period.

Proposition 2. Consider an agent of age h. The agent’s Choquet expected utility from
consumption plan c is given by

E
[
U (c) , νh

]
= u(ch) +

T∑
t=h+1

νhh,t · βt−h · Eh [u (ct)] (3)

where the subjective belief to survive from age h to t ≥ h is given by

νhh,t =

{
δh · λ+ (1− δh) · ψh,t for t > h

1 for t = h

14



with

δh =
δ

δ + (1− δ) · 1
1+
√
h

.

Proof. Fix age h and consider the neo-additive probability space (Ω,F , ν (· | h))

constructed in Appendix B.3. The objective probability to survive until period t is

given as

ψh,t =

t−1∏
s=h

ψs,s+1

implying

ψh,t =

T∑
s=t+1

ψh(Ds)

where Dt denotes the event that the agent dies at the end of period t. Consequently,

(2) can be equivalently rewritten as

E
[
U (c) , νh

]
= δh

(
λ

(
u(ch) +

T∑
t=h+1

βt−hE [u (ct) , π (ηt|ηh)]
)

+ (1− λ)u(ch)

)

+ (1− δh)
(
u(ch) +

T∑
t=h+1

ψh(Dt)
t∑

s=h+1

βs−hE [u (cs) , π (ηs|ηh)]
)

= u(ch) + δhλ
T∑

t=h+1

βt−hE [u (ct) , π (ηt|ηh)]

+ (1− δh)
T∑

t=h+1

ψh,t · βt−hE [u (ct) , π (ηt|ηh)]

= u(ch) +
T∑

t=h+1

νhh,tβ
t−hE [u (ct) , π (ηt|ηh)] ,

which, together with Proposition 1, proves the proposition.�

3.5 Recursive Problem and Dynamic Inconsistency

In contrast to a sequence of conditional additive probability spaces (Ω,F , ψ (· | h)),

h = 1, ..., T , our age-dependent sequence of conditional neo-additive probability spaces

(Ω,F , ν (· | h)), h = 1, ..., T , (generically) violates dynamic consistency of the agents’life-

cycle utility maximization problem whenever δ > 0.13 To characterize actual behavior

13We refer the interested reader to the axiomatic treatment of the relationship between violations of

dynamic consistency and violations of Savage’s (1954) sure-thing principle (as in CEU theory) to Epstein

and Le Breton (1993), Ghirardato (2002), Siniscalchi (2011) and the Appendix in Zimper (2012).
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in the presence of dynamic inconsistency, it is convenient to work with the recursive

representation of the planning problem under the, arguably, realistic assumption of naive

agents. That is, we consider dynamically inconsistent agents who are naive in the sense

that they wrongly assume that their optimal consumption plan for any given future-self

coincides with this future-self’s actual consumption choice.

We further assume that income risk is first-order Markov such that π(ηt | ηt−1) =

π(ηt | ηt). It is then straightforward to set up the recursive formulation of lifetime
utility (3) for a naive agent. The value function of age t ≥ h viewed from planning age

h is given by

V h
t (xt, ηt) = max

ct,xt+1

{
u (ct) + β

νhh,t+1

νhh,t
Et
[
V h
t+1

(
xt+1, ηt+1

)]}
.

The naive CEU agent’s first order condition is then given by the standard Euler equa-

tions.

Proposition 3. The consumption plan c = (ch, ch+1, ...) of a naive CEU agent must

satisfy, for all t ≥ h,

du

dct
≥ β (1 + r) ·

νhh,t+1

νhh,t
· Et

[
du

dct+1

]
(4)

which holds with equality if we have for future asset holdings at+1 > 0.

By (4), the expected growth of marginal utility from h to h+ 1 is higher than under

rational expectations if the household underestimates the probability of survival to the

next period, i.e., if νhh,h+1 < ψh,h+1, and vice versa for overestimation.

From the Euler equations (4) we can also directly verify that the CEU life-cycle

maximization problem is dynamically inconsistent if and only if the ambiguous survival

beliefs do not reduce to additive probabilities. To see this let us compare the optimal

consumption choice of an h + 1 old agent, first, from the perspective of an h old and,

second, from her actual perspective when she turns h+1. By Proposition 3, the optimal

consumption plan for age h+ 1 from the perspective of age h requires (for positive asset

holdings) that
du

dch+1

= β (1 + r) ·
νhh,h+2

νhh,h+1

· Eh+1

[
du

dch+2

]
(5)

whereas the optimal consumption choice at age h+ 1 from the perspective of age h+ 1

requires that
du

dch+1

= β (1 + r) ·
νh+1
h+1,h+2

νh+1
h+1,h+1

· Eh+1

[
du

dch+2

]
. (6)
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Dynamic consistency with respect to the optimal consumption choice at age h + 1

thus holds if and only if the two first order conditions (5) and (6) coincide. Because of

νh+1
h+1,h+1 = 1, this is the case if and only if

νhh,h+2

νhh,h+1

= νh+1
h+1,h+2,

which holds for δ = 0, implying

νhh,h+2

νhh,h+1

=
ψh,h+2

ψh,h+1

= ψh+1,h+2 = νh+1
h+1,h+2,

but which is violated for δ > 0 since (generically)

νhh,h+2

νhh,h+1

=
δhλ+ (1− δh)ψh,h+2

δhλ+ (1− δh)ψh,h+1

6= δh+1λ+ (1− δh+1)
ψh,h+2

ψh,h+1

= νh+1
h+1,h+2.

As in the static CPT model of Halevy (2008), the CEU life-cycle maximization prob-

lem considered in this paper is thus dynamically inconsistent whenever the agents do not

reduce to standard RE agents. Whereas dynamic inconsistency in Halevy (2008) results

from a fixed non-additive probability weighting function, dynamically inconsistency in

our model comes with a sequence of non-additive probability weighting functions.

3.6 Aggregation over Households

Wealth dispersion within each age bin is only driven by productivity shocks. We denote

the cross-sectional measure of agents with characteristics (at, ηt) by Φt(at, ηt). Denote by

A = [0,∞] the set of all possible asset holdings and let E be the set of all possible income
realizations. Define by P (E) the power set of E and by B (A) the Borel σ-algebra of A.
Let Y be the Cartesian product Y = A× E andM = (B (A)) . The measures Φt(·) are
elements ofM. We denote the Markov transition function– telling us how people with

characteristics (t, at, ηt) move to period t + 1 with characteristics t + 1, at+1, ηt+1– by

Qt(at, ηt). The cross-sectional measure evolves according to

Φt+1 (A× E) =

∫
Qt ((at, ηt) ,A× E) · Φt (dat×dηt)

and for newborns

Φ1 (A× E) = N1 ·

Π(E) if 0 ∈ A
0 else.

The Markov transition function Qt(·) is given by

Qt ((at, ηt) ,A× E) =


∑

ηt+1∈E π
(
ηt+1|ηt

)
· ψt,t+1 if at+1 (at, ηt) ∈ A

0 else
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for all (at, ηt) ∈ Y and all (A× E) ∈ Y.
Aggregation gives average (or aggregate)

consumption: c̄t =
∫
ct(at, ηt)Φt(dat × dηt),

assets: āt =
∫
at(at, ηt)Φt(dat × dηt),

income: ȳt = (1− τ)w
(∑tr−1

t=0 φtNt + χ
∑T

t=tr
Nt

)
,

total income: ȳtott = ȳt + rāt,

savings: s̄t = ȳtott − c̄t.

4 Calibration

4.1 Household Age

Households enter the model at age 20 (model age 0). The last working year is age 64,

hence tr = 45. We set the horizon to some maximum biological human lifespan at

age 125, hence T = 105. This choice is motivated by Weon and Je (2009) who estimate

a maximum human lifespan of around 125 years using Swedish female life-table data

between 1950− 2005.

4.2 Objective Cohort Data

For objective survival rates we estimate cohort specific survival rates for US cohorts alive

in 2007. Objective cross-sectional data is taken from the Social Security Administration

(SSA) for 1890− 1933 and the Human Mortality Database (HMD) for the years 1934−
2007. To obtain complete cohort tables, future survival rates are predicted by the Lee

and Carter (1992) procedure. Details are described in Ludwig and Zimper (2013).

Since data on survival rates is unreliable for ages past 100 we estimate survival rates

assuming the Gompertz-Makeham law.14 Accordingly, the mortality rate µt at age t is

assumed to follow

µt = α1 + α2 · exp (α3 · t) + εt, εt ∼ N (0, σ2).

We estimate parameters {αi}3
i=1 to get an out of sample prediction for ages past 100.

The resulting predicted mortality rate function fits actual data very well and is used

as objective cohort data in the simulation. According to our estimates, the average

mortality rate approaches 1 at ages around age 110 (t = 90). For all ages t = 91, . . . , 105,

we set the objective survival rate to ψt,t+1 = ε = 0.01.

14See, e.g., Preston et al. (2001), p. 192.
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4.3 Estimated Subjective Survival Beliefs

We follow Ludwig and Zimper (2013) and estimate parameters δ ≡ δh=0 and λ using a

non-linear rootfinder to best match the HRS data. Subjective survival rates are obtained

by pooling a sample of HRS waves {2000, 2002, 2004}. Except for heterogeneity in sex
and age, we ignore all other heterogeneity across individuals. The estimation yields δ =

0.118 and λ = 0.406.15

4.4 Preferences

We assume a CRRA per-period utility function with θ 6= 1 given by

u (ct) = Υ +
c1−θ
t

1− θ ,

for all t with preference shifter Υ ≥ 0. The preference shifter ensures that utility of

survival is always higher than utility from death, which is normalized as zero. As a

benchmark, we choose θ = 3.0– corresponding to an inter-temporal elasticity of substi-

tution (IES) of one third– and consider as range for sensitivity analysis θ ∈ {2, 4}.
Given θ > 1, per period utility is negative and we therefore calibrate the preference

shifter Υ such that condition

T∑
t=h+1

βt−hEh [u (ct)] > 0, for h = 0, . . .

holds for all t, ηt. We set Υ = 76.7 for the naive CEU agent which turns out to be

suffi ciently high.16 We further set the discount rate ρ to 5%.

4.5 Prices and Endowments

Wages are normalized to w = 1. We consider a symmetric two-state first-order Markov

chain for the income process in periods t = 0, . . . , tr with state vector E = [1+ε, 1−ε] and
symmetric transition matrix Π = [κ, 1−κ; 1−κ, κ]. We take as initial probability vector

of the Markov chain π0 = [0.5, 0.5]′. Values of persistence and conditional variance

of the income shock process are based on the estimates of Storesletten et al. (2004)

yielding κ = 0.97 and ε = 0.68.

15Estimation results are separately for men and women. We take an equally weighted average of the

estimated parameters to get an approximation for λ and δ in the population.
16This relates to Hall and Jones (2007) who calibrate– in a different model setup– a preference shifter

in the range of [22.1; 131.9]. Notice that this is just an arbitrary monotone transformation. Any choice

of Γ > 76.7 ensures that the value of life is always higher than the value of death.
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Table 2: Calibrated parameters

Technology and Prices

w = 1 Gross wage

r = 0.042 Interest rate

τ = 0.124 Social security contribution rate

χ = 0.322 Net pension benefit level

Income Process

κ = 0.97 Persistence of income

ε = 0.68 Variance of income

{φt} Age specific productivity estimated from PSID

Preferences

θ ∈ {2, 3, 4} Coeffi cient of relative risk aversion

ρ = 0.05 Subjective discount rate

ΥCEU = 76.65 Preference shifter for naive CEU agent

Subjective Survival Beliefs

δ = 0.118 Initial degree of ambiguity

λ = 0.406 Degree of relative optimism

Age Limits and Survival Data

0 Initial model age (age 20)

tr = 45 retirement (age 65)

T = 105 Maximum human lifespan (age 125){
ψk,t
}

Objective survival rates from SSA and HMD
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Age specific productivity {φt} of wages is estimated based on data from the Panel

Study of Income Dynamics (PSID) applying the method developed in Hugget et al.

(2007). The interest rate is set to r = 0.042 based on Siegel (2002). For the social

security contribution rate we take the US contribution rate of τ = 0.124. The pension

benefit level then follows from the social security budget constraint, cf. equation (1).

All parameters are summarized in Table 2.

5 Results

5.1 Ambiguous versus Rational Survival Beliefs

Figure 3 compares predicted subjective survival rates resulting from our model of am-

biguous survival beliefs with their empirical counterparts and corresponding objective

survival rates. Jumps in the figure are due to changes in interview age and respective

target age in the survey. Predicted subjective beliefs fit data on subjective survival

probabilities well. In particular, the model replicates underestimation of survival rates

at younger ages and overestimation at older ages.17

Figure 3: Objective, subjective and predicted survival rates

50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Survival Rates for Women

age

su
rv

iv
al

 ra
te

actual
predicted
objective survival rates

50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Survival Rates for Men

age

su
rv

iv
al

 ra
te

actual
predicted
objective survival rates

Notes: The figure depicts unconditional survival probabilities to different specific target ages according

to the questions in the HRS, cf. Table 1. Interview age is on the abscissa. The figure shows subjective

survival beliefs (solid blue line), the corresponding objective survival rates (dashed-dotted red line) and

the simulated subjective survival beliefs from the estimated CEU model (dashed green line).

Figure 4 compares the ambiguous survival beliefs at two different planning ages to the

objective cohort data. The panels in the figure show unconditional survival rates viewed

17Ludwig and Zimper (2013) perform sensitivity analysis with regard to the choice of the initial age,

the specific form of the experience function and focal point answers which shows that results do not

hinge on these aspects. They also document that biases in beliefs are not due to cohort effects.
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Figure 4: Unconditional survival probabilities
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Notes: Unconditional objective and subjective probabilities viewed from different planning ages h.

Target age is depicted on the abscissa.

from different planning ages where target age t is depicted on the abscissa. Within each

of the panels experience, and therefore the ambiguity parameter, does not change. In

line with Hammermesh (1985), Peracchi and Perotti (2010), Elder (2013) and several

others, subjective survival beliefs generally result in a flatter line than their objective

counterparts.

Furthermore, notice that our ambiguous survival beliefs match the stylized fact de-

scribed by Wu et al. (2013): People at a specific planning (or interview) age under-

estimate their chances of survival to the nearer future and overestimate the survival

probabilities to the more distant future. Also, comparing the different panels in Fig-

ure 4 we observe that overestimation of survival probabilities becomes more pronounced

as the agent gets older. For example, at age 85 there is underestimation of survival until

age 92 while survival to later target ages are overestimated.

We conclude that our calibrated model of ambiguous survival beliefs replicates well

the stylized features of the survival belief biases reported in the HRS.
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5.2 Life-Cycle Profiles with Ambiguous Beliefs

This subsection compares average plans and realized actions of naive CEU agents. These

agents update their plans in each period. As a way to compare any gap between plans

made at age h and realizations in t ≥ h for CEU agents we denote planned average

consumption with superscripts and compute

c̃ht =

∫
cht (at, ηt)Φ

h
t (dat × dηt) (7)

for all t. This gives us hypothetical average consumption profiles in the population if

households would stick to their respective period-h plans in all periods t = h, . . . , T .

Observe that Φh
t (·) is an artificial distribution generated by respective plans of house-

holds. We refer to equation (7) as (average) “planned”consumption (asset, ...) profile

in the figures that follow. By dynamic consistency, we have for RE agents that

cht (at, ηt) = c1
t (at, ηt) hence c̃ht = c̃t

for all h = 1, . . . , T . These equalities do not hold for naive CEU agents.

Figure 5 compares these objects for naive CEU agents. We compute average con-

sumption, c̃ht , net savings, s̃
h
t , assets, ã

h
t and total income, ỹ

tot
t as well as corresponding

average realizations. First note the usual hump-shaped consumption profile, in line with

data on non-durable consumption, cf. Fernandez-Villaverde and Krueger (2007).18 In

our calibration we have impatient consumers with ρ > r implying a downward-sloping

consumption profile in the retirement period. In the rational expectations model the con-

sumption growth rate reduces more and more as people grow older because of decreasing

survival rates. Meanwhile, the CRRA utility function implies consumers to be prudent

so that they will save for precautionary motives to self-insure against future income fluc-

tuations. The assumption of a borrowing constraint results in an additional– institution-

rather than preference-based– motive for precautionary savings of households to avoid

the future potential of binding borrowing constraint. As agents age, motives for pre-

cautionary saving become less and less strong and binding constraints less relevant. For

these reasons, consumption is initially upward sloping until retirement where the precau-

tionary savings motives are gone. Consequently, the saving rate is positive throughout

working life while the agents dissave during retirement. This in turn is reflected in the

accumulated assets which rise during working age and peak around retirement entry.

Finally, the marginal propensity to consume out of cash-on-hand (MPC) is u-shaped.

This results from the interplay of two effects: holding cash-on-hand constant the mar-

ginal propensity is low for younger agents and converges to one for older agents, due to
18Note that the interpretation of the general shape of the life-cycle profiles also account for the RE

agents, displayed in Figure 6.
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Figure 5: Average “planned”and realized life-cycle profiles of CEU agents
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Notes: Average planned life-cycle profiles of CEU agents at planning age 20 (h = 1) compared to

average ex-post profiles. MPC denotes the marginal propensity to consume out of cash-on-hand which

is approximated by computing averages of ∆c/∆x from the associated policy functions.

their shorter remaining lifetime. For any given age, the marginal propensity decreases

with cash-on-hand from values close to one for agents with only little wealth to much

lower values for agents with higher cash-on-hand values. As cash-on-hand is low at the

beginning of the life-cycle, these effects taken together result in a u-shaped profile.

Comparing the plan and the realization we observe that, initially, CEU agents plan

to save more and consume less during working life which would result in higher assets.

The planned average saving rate of 20 year old CEU agents is 24.7 percent, whereas the

realized saving rate is 21.9 percent. We can thus replicate empirical findings reviewed

above that people save less than originally planned, cf. Choi et al. (2006).

Note also that the planned and realized MPC of CEU agents diverge at older ages.

This results from increasing overestimation of survival probabilities which implies large

planned old-age asset holdings.

5.3 Life-Cycle Profiles in Rational Baseline Calibration

To highlight the effects of modeling subjective survival beliefs on life-cycle profiles of

consumption, saving and asset holdings we compare in Figure 6 naive CEU agents with
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RE agents who use objective survival data.19 On average, CEU agents exhibit under-

saving during early working life until age 57 relative to RE agents. Naive CEU agents

first consume more than RE agents but start to consume less at age 46 leading to higher

saving at age 58 and higher asset holdings later in life. The subjective survival belief

model thus gives rise to undersaving at younger ages– due to an underestimation of

future survival– and to higher asset holdings at older ages– due to an overestimation

of the survival rate at older ages. Correspondingly, the marginal propensity to consume

is higher for CEU than for RE agents at younger ages whereas the converse is true at

older ages.

Figure 6: Average life-cycle profiles: RE versus naive CEU
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Notes: Average life-cycle profile of naive CEU agents compared to RE agents. MPC denotes the

marginal propensity to consume out of cash-on-hand which is approximated by by computing averages

of ∆c/∆x from the associated policy functions.

Table 3 comprises these results by reporting summary statistics. The average saving

rate20 of CEU agents during their working life is roughly one percentage point lower

than the average saving rate of RE agents. More strikingly, average asset holdings of

the elderly of ages 85+ are very different between the two types. For CEU agents assets

19In this comparison across models we hold the raw discount rate ρ constant. We treat ρ as a deep

structural model parameter which is identified by the use of one specific model and calibrated here by

reference to our studies. This justifies holding it constant when analyzing counterfactual models.
20The saving rate is defined as the ratio of average savings to average income.
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Table 3: Summary statistics

RE CEU

Saving rate1) 22.8% 21.9%

Assets at age 85 relative to 652) Average 35.4% 46.9%

Median 31.0% 37.3%

Assets at age 95 relative to 652) Average 8.1% 23.9%

Median 3.1% 11.6%

Assets of ages 85+ rel. to lifetime average3) 52.2% 106.9%
1) We define the “average”saving rate as the ratio of averages

during working life. We hence compute
∑
st/
∑
yt

2) Assets of age 85 (95) relative to assets at retirement entry.
3) Percentage difference of average assets during ages 85-110 relative to

average assets through whole life.

of the elderly are roughly 107 percent of average assets. On the contrary, for RE agents,

average asset holdings of the elderly are only 52 percent of average assets.

Assets of an agent at age 85 (95) relative to her assets at retirement entry are still

46.9% (23.9%) while these values are much lower for RE agents, especially at very old

ages. To make our results comparable to the empirical evidence reported by Hurd and

Rohwedder (2010), Table 3 also reports numbers on median asset holdings. According

to Hurd and Rohwedder (2010), median wealth paths for single households in the HRS

indicate that households at age 85 (90) still hold around 49 (21) percent of their assets

of age 65. This corresponds to a decumulation speed of 49
21

= 2.3. Our simulation gives

a median decumulation speed of RE agents of 31.0
3.1
≈ 10.0 compared to 37.3

11.6
≈ 3.2 for

CEU agents which is substantially closer to the empirical Hurd and Rohwedder (2010)

benchmark of 2.3. Consequently, ambiguous survival beliefs– resulting in overestimation

at old ages– have to be considered as one additional cause for the high old-age asset

holdings besides the existing explanations in the form of bequest and precautionary

savings motives (De Nardi et al. 2010; Lockwood 2013).

5.4 Trade-offBetween Matching Both Empirical Facts

The inter-temporal elasticity of substitution (IES)– the inverse of the coeffi cient of rel-

ative risk aversion θ– influences the willingness to smooth consumption over time. In-

creasing the IES leads to more consumption at younger ages and to a higher degree of

undersaving by the CEU agent. This results in less asset accumulation. In contrast, high

old-age asset holdings of CEU agents is less pronounced when the intertemporal substi-
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tution elasticity is high. Thus, the choice of the IES determines whether undersaving or

high old-age asset holdings is predominant.

Table 4: Summary statistics for different IES1)

High IES Low IES

RE CEU RE CEU

Saving rate 19.9% 16.6% 25.0% 24.9%

Assets at 85 rel. to 65 Average 25.1% 25.7% 42.3% 57.7%

Median 17.3% 9.4% 35.9% 51.7%

Assets at 95 rel. to 65 Average 2.6% 5.0% 13.5% 36.5%

Median 0.7% 1.0% 9.1% 29.4%

Assets at 85+ rel. to average 31.4% 40.0% 68.7% 145.8%
1) High IES is θ = 2, low IES is θ = 4. For a description of how the

statistics are constructed see Table 3.

Table 4 shows the saving rate and asset holdings for different values of the IES

by setting θ ∈ {2, 4}. In case of a high IES (θ = 2), undersaving by CEU agents

increases to 3.3 percentage points. At the same time the difference of average asset

holdings of the elderly between CEU and RE are less pronounced. Nevertheless, CEU

agents have on average roughly 8.6 percentage points higher relative average assets at

old age than RE agents. A lower elasticity (θ = 4) leads to very pronounced high asset

holdings of elderly CEU agents which are 77.2 percentage points higher than for average

RE agents. The undersaving effect almost vanishes, though. With θ = 4, assets of a

85 (95) year CEU agent relative to the assets at age 65 are at 57.7 (36.5) percent.

CEU median asset holdings at age 85 relative to age 65 are 51.7 percent and close

to the empirical point estimate of 49 percent, cf. Hurd and Rohwedder (2010). The

median CEU decumulation speed is 51.7
29.4
≈ 1.75 which is in fact lower than the empirical

benchmark of 2.3.21 Therefore, our model would exactly replicate this fact with an IES

somewhere in the reasonable range of [0.25, 0.33].

6 Concluding Remarks

This paper studies implications of ambiguous survival beliefs for consumption and saving

behavior. Point of departure of our analysis is that people make mistakes in assessing

their chances to survive into the future: “young”people tend to underestimate whereas

21The corresponding median RE decumulation speed is 35.99.1 ≈ 3.94 which again is far off the empirical

benchmark.
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“old”people tend to overestimate their survival probabilities. We adopt and parame-

trize a model of Bayesian learning of ambiguous survival beliefs which replicates these

patterns. The resulting conditional neo-additive survival beliefs are merged into a sto-

chastic life-cycle model with CEU (=Choquet expected utility) agents to study life cycle

consequences compared to agents with rational expectations (RE).

We show that agents of our model behave dynamically inconsistent. As a result

(naive) CEU agents save less at younger ages than they actually planned to save. Due

to underestimation of survival at young age, CEU agents also save less than RE agents.

Despite this tendency to undersave, CEU agents eventually have higher asset holdings

after retirement because of the overestimation of survival probabilities in old age. Over-

all, our model of mistakes in the assessment of survival prospects adds to explanations

for three empirical findings: (i) time inconsistency of agents, (ii) undersaving at younger

ages and (iii) high asset holdings at old age. Hence, our model hits at– but does not

kill– “three birds with one stone”.

Our work gives rise to several avenues of future research. First, observe that the

ambiguous survival survival belief functions depicted in Figure 4 closely resemble quasi-

hyperbolic time discounting functions, cf., e.g., Laibson (1997). Our ongoing current

research compares the qualitative and quantitative features of our ambiguous survival

beliefs model with models of hyperbolic time discounting. Of particular interest is the

close theoretical (Saito 2011) and empirical (Epper et al. 2011) relationship between

the concepts of CPT/CEU and hyperbolic time discounting. Second, we plan to com-

bine our notion of CEU agents with hyperbolic time discounting and/or with bequest

and precautionary savings motives in order to cover important aspects of life-cycle de-

cisions. The main challenge for this generalizing approach will be to come up with a

parsimonious model in which all calibrated behavioral parameters are identified. Third,

we plan to come back in future research to the question of whether “minimizing one’s

encounter with death”or “age-increasing likelihood insensitivity”(or a combination of

both effects) is the better heuristic interpretation for our model’s formal feature of an

age-increasing δh. Finally, we will extend our framework to address normative questions

on the optimal design of the tax and transfer system, similar to Laibson et al. (1998),

Imrohoroglu et al. (2003) and, more recently, Pavoni and Yazici (2012, 2013) in the

hyperbolic time discounting literature.
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A Appendix: Choquet Decision Theory

A.1 Choquet Integration and Neo-additive Capacities

Consider a measurable space (Ω,F) with F denoting a σ-algebra on the state space Ω

and a non-additive probability measure (=capacity) κ : F → [0, 1] satisfying

(i) κ (∅) = 0, κ (Ω) = 1

(ii) A ⊂ B ⇒ κ (A) ≤ κ (B) for all A,B ∈ F .
The Choquet integral of a bounded F-measurable function f : Ω→ R with respect to

capacity κ is defined as the following Riemann integral extended to domainΩ (Schmeidler

1986):

E [f, κ] =

∫ 0

−∞
(κ ({ω ∈ Ω | f (ω) ≥ z})− 1) dz +

∫ +∞

0

κ ({ω ∈ Ω | f (ω) ≥ z}) dz. (8)

For example, assume that f takes onm different values such that A1, ..., Am is the unique

partition of Ω with f (ω1) > ... > f (ωm) for ωi ∈ Ai. Then the Choquet expectation
(8) becomes

E [f, κ] =
m∑
i=1

f (ωi) · [κ (A1 ∪ ... ∪ Ai)− κ (A1 ∪ ... ∪ Ai−1)] .

This paper focuses on non-additive probability measures that are defined as neo-

additive capacities in the sense of Chateauneuf et al. (2007). Recall that the set of null

events, denoted N , collects all events that the decision maker deems impossible.

Definition 1. Fix some set of null-events N ⊂ F for the measurable space (Ω,F).

The neo-additive capacity, ν, is defined, for some δ, λ ∈ [0, 1] by

ν (A) = δ · νλ (A) + (1− δ) · µ (A) (9)

for all A ∈ F such that µ is some additive probability measure satisfying

µ (A) =

{
0 if A ∈ N
1 if Ω\A ∈ N

and the non-additive probability measure νλ is defined as follows

νλ (A) =


0 iff A ∈ N
λ else

1 iff Ω\A ∈ N .
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In this paper, we are exclusively concerned with the empty set as the only null event,

i.e., N = {∅}. In this case, the neo-additive capacity ν in (9) simplifies to

ν (A) = δ · λ+ (1− δ) · µ (A)

for all A 6= ∅,Ω. The following observation extends a result (Lemma 3.1) of Chateauneuf
et al. (2007) for finite random variables to the more general case of random variables

with a bounded range (see Zimper 2012 for a formal proof).

Observation 1. Let f : Ω → R be an F-measurable function with bounded range.
The Choquet expected value (8) of f with respect to a neo-additive capacity (9) is

then given by

E [f, ν] = δ (λ sup f + (1− λ) inf f) + (1− δ)E [f, µ] .

A.2 The Generalized Bayesian Update Rule

CEU theory has been developed in order to accommodate paradoxes of the Ellsberg

(1961) type which show that real-life decision-makers violate Savage’s (1954) sure thing

principle. Abandoning the sure thing principle has two important implications for con-

ditional CEU preferences. First, in contrast to Bayesian updating of additive proba-

bility measures, there exist several perceivable Bayesian update rules for non-additive

probability measures (Gilboa and Schmeidler 1993; Pires 2002; Eichberger et al. 2007;

Siniscalchi 2011). Second, if CEU preferences are updated in accordance with an up-

dating rule that universally satisfies the principle of consequentialism, then these CEU

preferences violate the principle of dynamic consistency (in a universal sense) whenever

they do not reduce to EU preferences (cf. Epstein and Le Breton 1993; Ghirardato 2002;

Zimper 2012 and references therein).

In the present paper we assume that the agents form conditional capacities in accor-

dance with the Generalized Bayesian update rule such that, for all non-null A,B ∈ F ,

κ (A | B) =
κ (A ∩B)

κ (A ∩B) + 1− κ (A ∪ ¬B)
. (10)

An application of (10) to a neo-additive capacity ν gives rise to the following observation.

Observation 2. If the Generalized Bayesian update rule (10) is applied to a neo-
additive capacity (9), we obtain, for all non-null A,B ∈ F ,

ν (A | B) = δB · λ+ (1− δB) · µ (A | B)
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such that

δB =
δ

δ + (1− δ) · µ (B)
.

B Appendix: Bayesian Learning of Ambiguous Sur-

vival Beliefs

This appendix derives Proposition 1 and it constructs the neo-additive probability spaces

which we use when we define the life-cycle CEU maximization problem in Section 3.4.

To this purpose, let us briefly recall the learning model of ambiguous survival beliefs as

introduced in Ludwig and Zimper (2013). We consider an h-old agent, with 0 ≤ h ≤ k,

who observes the random sample information Ĩn(h) which counts how many individuals

out of a sample of size n (h) have survived from age k to t with k < t. By assumption,

these individuals have the same i.i.d. objective survival probability as the agent.

B.1 The Benchmark Case of Additive Survival Beliefs

At first, consider a standard Bayesian decision maker whose additive estimator for the

chance of surviving from k to t conditional on Ĩn(h) is defined as the conditional expected

value

E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
where the random variable θ̃ stands for the agent’s survival chance with support on

(0, 1). By the i.i.d. assumption of individual survivals, Ĩn(h) is, conditional on the true

survival probability θ̃ = θ, binomially distributed with probabilities

µ
(
Ĩn(h) = j | θ

)
=

(
n (h)

j

)
θj (1− θ)n−j for j ∈ {0, ..., n (h)} .

We further assume that the agent’s prior over θ̃ is given as a Beta distribution with

parameters α, β > 0, implying E
[
θ̃, µ

(
θ̃
)]

= α
α+β

. That is, we assume that

µ
(
θ̃ = θ

)
= Kα,βθ

α−1 (1− θ)β−1

where Kα,β = Γ(α+β)
Γ(α)Γ(β)

is a normalizing constant.22

22The gamma function is defined as Γ (y) =
∞∫
0

xy−1e−xdx for y > 0.
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By Bayes’rule we obtain the following conditional distribution of θ̃

µ
(
θ̃ = θ | Ĩn(h) = j

)
=

µ
(
Ĩn(h) = j | θ

)
µ (θ)∫

(0,1)
µ
(
Ĩn(h) = j | θ

)
µ (θ) dθ

= Kα+j−1
α+j,β+n(h)−kθ

α+j−1 (1− θ)β+n(h)−j−1 for θ ∈ (0, 1)

Note that µ
(
θ̃ | Ĩn(h) = j

)
is itself a Beta distribution with parameters α+j, β+n (h)−j.

The agent’s subjective survival belief conditional on information Ĩn(h) = j is thus given

as

E
[
θ̃, µ

(
θ̃ | j

)]
=

α + j

α + β + n (h)

=

(
α + β

α + β + n (h)

)
E
[
θ̃, µ

(
θ̃
)]

+

(
n (h)

α + β + n (h)

)
j

n (h)
,

for j ∈ {0, ..., n (h)} .

That is, the posterior estimator E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
is a weighted average of her prior sur-

vival probability E
[
θ̃, µ

(
θ̃
)]
, not including any sample information, and the observed

sample mean j
n(h)
.

B.2 Ambiguous Survival Beliefs

Turn now to a Choquet decision maker with neo-additive capacity

ν
(
θ̃
)

= δ · λ+ (1− δ) · µ
(
θ̃
)

such that the conditional neo-additive capacity ν
(
θ̃ | Ĩn(h)

)
results from an application of

the Generalized Bayesian update rule. Instead of the additive estimatorE
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
we now suppose that the agent’s estimator for her survival chance is given as the condi-

tional Choquet expected value

E
[
θ̃, ν

(
θ̃ | Ĩn(h)

)]
=δĨn(h)

(
λ sup θ̃ + (1− λ) inf θ̃

)
+
(

1− δĨn(h)
)
E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
.

(11)

For a Beta distribution µ
(
θ̃
)
, Ludwig and Zimper (2013) prove the following result:

Observation 3. The Choquet decision maker’s ambiguous survival belief is given as

E
[
θ̃, ν

(
θ̃ | Ĩn(h)

)]
= δĨn(h) · λ+

(
1− δĨn(h)

)
· E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
, (12)
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with

δĨn(h) =
δ

δ + (1− δ) · µ
(
Ĩn(h)

)
where the unconditional distribution of Ĩn(h) is given by

µ
(
Ĩn(h) = j

)
=

(
n (h)

j

)
(α + j − 1) · ... · α · (β + n (h)− j − 1) · ... · β

(α + β + n (h)− 1) · ... · (α + β)
, (13)

for j ∈ {0, ..., n (h)} .

In a next step, we employ several simplifying assumptions:

Assumption 1. The additive part E
[
θ̃, ν

(
θ̃ | Ĩn(h)

)]
is, for any information Ĩn(h),

given as the objective probability, denoted ψk,t, to survive from age k to t.

Assumption 2. The agent’s additive prior over the parameter space is given as a
uniform distribution, i.e., a Beta distribution with parameters α = β = 1, implying

for (13) that

µ
(
Ĩn(h) = j

)
=

(
n (h)

k

)
k! (n (h)− k)!

(n (h) + 1) · n (h)!

=
1

1 + n (h)
.

Assumption 3. The age-dependent sample-size function is given as

n (h) =
√
h for h ≤ T .

Assumption 1 is an extreme version of the rational Bayesian learning part of the

model developed in Appendix B.1. It specifies a correct additive prior and hence sim-

plifies upon Ludwig and Zimper (2013).23 By this assumption any difference between

subjective survival beliefs and objective survival probabilities are exclusively driven by

the ambiguity part of the agent’s belief. Assumption 2 allows for an explicit expression

of the unconditional probability µ
(
Ĩn(h)

)
which only depends on age h, i.e., it is iden-

tical for every possibly observed sample information Ĩn(h) if h is fixed. By Assumption

3, the agent’s experience grows with age but with diminishing returns.

23Ludwig and Zimper (2013) are more explicit about the rational Bayesian learning part of the model

and assume a proportional bias in prior additive beliefs.
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Observation 4. Under Assumptions 1-3, the estimator (12) simplifies to

E
[
θ̃, ν

(
θ̃ | Ĩn(h)

)]
= E

[
θ̃, ν

(
θ̃ | h

)]
= δh · λ+ (1− δh) · ψk,t

such that

δh =
δ

δ + (1− δ) · 1
1+
√
h

whenever h ≤ k < t ≤ T , i.e., ψk,t ∈ (0, 1).

Finally, identifying the h-old agent’s subjective belief to survive from k to t with her

estimator (11), i.e., defining νhk,t ≡ E
[
θ̃, ν

(
θ̃ | h

)]
, gives the desired result of Proposi-

tion 1.

B.3 Neo-additive Probability Spaces

It remains to provide a mathematically rigorous translation of the notion of ambiguous

survival beliefs νhk,t of Proposition 1 into the construction of the conditional neo-additive

probability spaces
(
Ω,Fh, ν (· | h)

)
, h = 1, ..., T , that are relevant to the CEU life-cycle

maximization problem of Section 3.4.

To this purpose define the finite state space Ω = {0, 1, ..., T} and denote by F the

powerset of Ω. We interpret Dt = {t} , t ∈ Ω as the event in F that the agent dies at the
end of period t. Define age h of the agent as the following event in F : h = Dh∪ ...∪DT .

Further, formally define Zk,t = Dt ∪ ... ∪DT as the event in F that the agent survives
from period k to the beginning of period t.

For each age h, the σ-algebra Fh is generated by the following partition of Ω:

{{0} , .., {h− 1} , {h, ..., T}}. That is, if the agent turns age h she (trivially) observes
that she has not died in any previous period but will die at the end of either period h

or h + 1 or ... or T . Observe that our definition of Fh implies a standard information
filtration process because of F1 ⊂ ... ⊂ FT = F .
To conclude the construction of

(
Ω,Fh, ν (· | h)

)
, h = 1, ..., T , define ν (Zk,t | h) ≡

νhk,t such that ν
h
k,t is given by Proposition 1.
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C Supplementary Appendix: A Three-PeriodModel

The intuition of how ambiguous survival beliefs affect consumption and saving behavior

will be given in a simple three-period model (T = 2) which can be solved analytically.

In this simple model we abstract from borrowing constraints, hence at+1 < 0, t < T

is possible. The no-Ponzi condition aT+1 ≥ 0 is of course assumed. To simplify the

analysis we assume the discount factor β to be one and an interest rate r of zero.

As shown in Section 3, lifetime utility for T = 2 with ambiguous survival beliefs is

expressed as

U0
0 = u(c0) + ν0

0,1u(c1) + ν0
0,2u(c2)

= u(c0) + ν0
0,1

(
u(c1) +

ν0
0,2

ν0
0,1

u(c2)

)
,

where νhk,t is the subjective survival belief from Proposition 1. Recall that superscripts

denote the respective planning age.

We normalize the utility from death to zero. Lifetime utility of CEU agents reduces

to the standard rational expectations case if and only if there is no initial ambiguity, i.e.,

if δ = 0. As in Section 3 we assume a CRRA per-period utility function with preference

shifter Υ ≥ 0.

We define by xt ≡ at + yt cash-on-hand as the sum of financial assets at and income

yt. In addition, define the present value of future income, ht ≡
∑T

s=t+1 ys, as human

wealth. Finally, let total wealth be wt ≡ xt +ht. The budget constraint is then given by

wt+1 = wt − ct.

In light of the data on subjective beliefs displayed in Figure 1 of the paper we

interpret period 0 of the simple model as the period when survival probabilities are

underestimated, i.e., up to actual age of about 65 − 70. Period 1 then reflects the

period when there is overestimation in the data. Correspondingly, we make the following

assumption:

Assumption 4. We assume for some δ > 0 that

ψ0,1 > ν0
0,1 = δ0λ+ (1− δ0)ψ0,1 (14)

i.e., that λ < ψ0,1as well as

ψ1,2 < ν1
1,2 = δ1λ+ (1− δ1)ψ1,2 (15)
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i.e., that λ > ψ1,2.
24

Analysis of Consumption and Saving plans

We now turn to the complete inter-temporal household solution to analyze how con-

sumption and saving decisions are altered by biases in subjective survival beliefs.

Rational Expectations

The reference model is the standard solution to the rational expectations model (where δ0 =

δ1 = 0). Here, lifetime utility does not depend on the planing period, i.e., U0
1 = U1

1 .

Lifetime utility in period 0 is given by U0 = u(c0) + ψ0,1

(
u(c1) + ψ1,2u(c2)

)
.

Observation 5. Policy functions of the rational expectations solution are linear in
total wealth, ct = mtwt, where

mt =


1

1+ 1

ψ
− 1
θ

t,t+1mt+1

for t < T

1 for t = T.

Proof. See, e.g., Deaton (1992) �.

CEU Households

To draw a distinction between RE and CEU households, we use superscript n to denote

policy functions (in terms of marginal propensities to consume) of naive CEU households.

Given that the household consumes all outstanding wealth in the final period 2 (i.e.mn
2 =

1) the solution of the household’s problem for all other periods are as follows:

Proposition 4. The solution for the naive CEU household is as follows:

• The solution to the problem in period 1 is:

c1,n
1 = m1,n

1 w1 where m1,n
1 =

1

1 + 1

(ν11,2)
− 1
θ

.

24Notice that, despite equation (15), we may have that the household in period 0 underestimates the

probability to survive from period 1 to 2, hence we may have that

ψ1,2 > ν01,2 = δ0λ+ (1− δ0)ψ1,2.

This is so because δ0 < δ1 and therefore less weight is put on the relative optimism parameter λ.
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• The plan in period 0 for period 1 is:

c0,n
1 = m0,n

1 w1 where m0,n
1 =

1

1 + 1(
ν00,2

ν00,1

)− 1
θ

.

• The solution in period 0 is:

c0,n
0 = m0,n

0 w0 where m0,n
0 =

1

1 + 1

(ν00,1)−
1
θm0,n

1

.

Proof. Assuming β = R = 1, the first-order condition in period 1 is:

uc(c1) = ν1
1,2uc(c2)

which gives

c1,n
1 = m1,n

1 w1 where m1,n
1 =

1

1 + 1

(ν11,2)
− 1
θ

.

Period 0: The plan for period 1 gives the first-order condition:

uc(c1) =
ν0

0,2

ν0
0,1

uc(c2)

which yields

c1,n
1 = m1,n

1 w1 where m1,n
1 =

1

1 + 1(
ν00,2

ν00,1

)− 1
θ

The first-order condition in period 0 is:

uc(c0) = ν0
0,1uc(c1)

yielding

c0 = m0,n
0 w0 =

1

1 + 1

(ν00,1)−
1
θm0,n

1

w0.

�

We proceed by introducing two definitions which will be used to interpret the above

policy functions.

Definition 2 (Moderate Overestimation). A household moderately overestimates
planned unconditional survival beliefs if ν1

1,2 <
ν00,2
ν00,1
.
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Definition 3 (Suffi cient Underestimation). A household at period 0 suffi ciently

underestimates objective conditional survival probabilities if
ν00,1
ψ0,1

<
(
m1,n
1

m1

)θ
< 1.

Comparing the policy functions of Observation 5 and Proposition 4 yields the fol-

lowing Proposition 5 which highlights the consequences of ambiguous survival beliefs for

life-cycle savings by studying marginal propensities to consume.

Proposition 5. The marginal propensities to consume out of total wealth of the CEU
agent compared to the RE agent are as follows:

• Realization in t = 0 : Under suffi cient underestimation we have that

m0,n
0 > m0.

• Plan for t = 1 : Under moderate overestimation we have that

m0,n
1 < m1,n

1 .

• Realization in t = 1 : We have that

m1,n
1 < m1.

At age 0 the realized marginal propensity of the CEU agent, m0,n
0 , is higher than for

an agent with rational expectations, m0. This outcome only holds under the condition

of suffi cient underestimation of Definition 3. The result implies undersaving, i.e., the

naive CEU household saves less out of initial wealth in period 0 than the RE agent.

Turning to the plan of self 0 for the next period 1, observe that the marginal propen-

sity to consume in period 1 planned in period 0, m0,n
1 , is lower than the realized marginal

propensity, m1,n
1 . Again, this outcome only holds under a certain condition, which is la-

beled as moderate overestimation, cf. Definition 2. That is, only if overestimation is not

too large, we can expect model households to save less than originally planned.

Finally, the realized marginal propensity of the CEU agent at age 1, m1,n
1 , is lower

than for the RE agent, m1. In period 1, the CEU household saves more out of accu-

mulated wealth relative to the RE household. Nevertheless, accumulated wealth is an

endogenous object. While it is clear that accumulated wealth of the naive CEU house-

hold in period 0 is lower than for an agent with rational expectations, relative wealth

positions across the two households in period 1 depend on the relative strength of suf-

ficient underestimation in period 0 vis-a-vis overestimation in period 1. It is therefore
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ultimately a quantitative question whether accumulated wealth in period 2 of CEU

households exceeds wealth of households with rational expectations.25

The analysis of the simple model clarifies that it is a quantitative question whether

the calibrated life-cycle model can generate the three empirical regularities on saving

behavior: (i) time inconsistent behavior to the effect that people save less than origi-

nally planned (under “moderate overestimation”); (ii) undersaving at young age (under

“suffi cient underestimation”); (iii) high old age asset holdings (if the overestimation

eventually outweighs initially low asset accumulation due to the underestimation).

25To provide a full characterization we could of course express consumption in all periods as a function

of initial wealth. Terms however get messy and interpretation is easier with marginal propensities to

consume out of current wealth.
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