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Abstract

We extend the all-pay auctions analysis of Krishna and Morgan (1997) to a stochastic

competition setting. In the war of attrition it does not directly follow from the first

order condition that the bidding equilibrium strategy is a weighted average of the bidding

equilibrium strategies that would be chosen for each number of bidders. This result

contrasts with the characterization of the bidding equilibrium strategies in the first-price

all-pay auction as well as the winner-pay auctions. Our findings are applicable to future

works on contests and charity auctions.
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1 Introduction

The wide and growing literature on all-pay auctions assumes that the number of bidders is

common knowledge. Yet, in many situations where all-pay auctions illustrate economic, so-

cial and political issues, participants do not know the number of their opponents. Indeed,

in lobbying contests, R&D races or battles to control some markets, agents do not know the

exact number of their rivals. In a lobbying contest, some groups of interest give a bribe to

the decision maker in order to obtain a market or a political favor. In R&D races, firms

compete each other to be the first one to obtain a patent. The money spent in this race is

not refundable. More generally, the effect of an unknown number of bidders is an important

question in auction theory (see the recent paper of Harstad, Pekec, and Tsetlin (2008)).
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Krishna and Morgan (1997) analyzed these auction designs with affiliated signals where

the number of bidders is fixed and common knowledge. In this paper, we extend their anal-

ysis to a stochastic competition framework. In the following we call “all-pay auction” the

first-price all-pay auction and “war of attrition” the second-price all-pay auction.

McAfee and McMillan (1987) and Matthews (1987) studied first-price auctions with a

stochastic number of bidders. They determined if it is better to conceal or to reveal the

information about the number of bidders for first and second-price winner-pay auctions in

different frameworks.1 However, they did not characterize the equilibrium strategies. Using

a model à la Milgrom and Weber (1982) with independent private signals instead of affiliated

ones, Harstad, Kagel, and Levin (1990) established that equilibrium bids with stochastic

competition are weighted averages of the equilibrium bids in auctions where the number of

bidders is common knowledge. Krishna (2002) investigated this result in another way with

an independent private value model. In a recent paper Harstad, Pekec, and Tsetlin (2008)

found the same result in multi-unit winner-pay auctions with common value.2

The equilibrium strategy of the all-pay auction (the proof is omitted), as well as winner-

pay auctions (Harstad, Kagel, and Levin, 1990), is a weighted average of equilibrium strategies

that would be chosen for each number of bidders. However, it is not obvious for wars of at-

trition. Indeed, contrary to the – first and second-price – winner-pay auctions, it does not

directly follow from the first order condition that the equilibrium strategy should be equal to

a weighted average. We provide an answer only for the independent-private-values model.

The paper is organized as follows. The model and preliminaries are given in section 2. In

section 3, we analyze the equilibrium strategy in wars of attrition. In section 4, we provide

an illustration for the independent private values model. Details of some computations are

given in appendix.

2 Model with Stochastic Competition

The model follows and generalizes the preliminaries of Krishna and Morgan (1997) (hence-

forth K-M) in a stochastic competition setting (as McAfee and McMillan (1987) and Harstad,

Kagel, and Levin (1990) used in the study of winner-pay auctions). There is an indivisible

object that can be allocated to N = {1, 2, ..., n} potential bidders, with n <∞. Every poten-

tial bidder is risk neutral. Firstly, we consider a set of bidders A ⊂ N . Denote |A| = a the

cardinality of set A.

1Matthews (1987) considered bidders with an increasing, a decreasing or a constant absolute risk-aversion

and McAfee and McMillan (1987) focused only on the risk-averse bidders and determined the optimal auction.
2In their framework, the number of identical prizes is proportional to the number of bidders. They showed

that an unknown number of bidders could change the results on information aggregation. Common knowledge

of the proportional ratio allows to find the results on information aggregation when the number of bidders is

sufficiently high.
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Prior to the auction, each bidder i observes a real-valued signal Xi ∈ [0, x̄]. The value of the

object to bidder i, which depends on his signal and those of the other bidders, is denoted by

Va,i = Va,i(X) = Va(Xi,X−i)

where Va, which is the same function for all bidders, is symmetric in the opponent bidders’

signals X−i = (X1, ..., Xi−1, Xi+1, ..., Xa). It is assumed that Va is non-negative, continuous,

and non-decreasing in each argument. Moreover, the bidders’ valuation for the object is

supposed bounded for all a: EVa,i <∞.

Let f be the joint density of X1, X2, ..., Xa, a symmetric function in the bidders’ signals.

Besides, for any a-tuple y, z ∈ [0, x̄]a with m̄ = {max(yi, zi)}ai=1 and m = {min(yi, zi)}ai=1, f

satisfies the affiliation inequality

f(m̄)f(m) ≥ f(y)f(z).

Affiliation is a strong form of positive correlation as discussed by Milgrom and Weber (1982).

It means that if a bidder’s signal is high, then other bidders’ signals are likely high too.

As a consequence, the competition is likely to be strong. Let FY 1
a

(.|x) be the conditional

distribution of Y 1
a , where Y 1

a = max{Xj}aj=2, given X1 = x and fY 1
a

(.|x) the corresponding

density function.

When the number of potential bidders a is common knowledge, we can define

va(x, y) = E(Va,1|X1 = x, Y 1
a = y), (1)

the Bayesian assessment of bidder 1 when his private signal is x and the maximal signal of

his opponents is y. As in K-M, we assume that va(x, y) is increasing.3

We consider the situation in which bidders do not know the number of their rivals when they

choose their strategy. For any subset A of N , we denote πA the probability that A is the set

of active bidders. Moreover, the probabilities πA are independent of the bidders’ identities

and auction rules. Sets with equal cardinality have equal probabilities. Therefore, the ex ante

probability to have a participants in the auction is the sum of probabilities with the same

cardinal a:

sa :=
∑

|A|=a,A⊂N

πA such as
n∑
a=1

sa = 1

Let pia bidder i’s updated probability that there are a bidders conditional upon the event

that he is an active bidder. We suppose that these probabilities are common knowledge and

symmetric such as pia = pa. Therefore4

pia :=

∑
|A|=a,i∈A⊂N

πA∑
i∈B⊂N

πB
and pa = pia =

asa
n∑
i=1

isi

3As Milgrom and Weber (1982) and K-M remark, since X1 and Y 1
a are affiliated, va(x, y) is a non-decreasing

function of its arguments. But they adopted the same assumption.
4For detail, see McAfee and McMillan (1987).
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3 Analysis of the War of Attrition

Assume that the number of bidders is common knowledge and each bidder i bids an amount

bi. Thus, the payoff of the bidder i if b is the vector of bids is

Ua,i(b,X) =


Va,i(X)−max

j 6=i
bj if bi > max

j 6=i
bj

1

#Q(b)
Va,i(X)− bi if bi = max

i 6=j
bj

−bi if bi < max
j 6=i

bj

where i 6= j and Q(b) := {argmaxi bi} is the collection of the highest bids. Strategies at the

symmetric equilibrium are noted βa when the number of bidders a is known. K-M show that

the bidding equilibrium strategy when the bidders are informed about the number of bidders

a is

βa(x) =

∫ x

0
va(t, t)λ(t|t, a)dt (2)

where λ(y|x, a) =
fY 1

a
(y|x)

1− FY 1
a

(y|x)
and with the following boundary conditions:

βa(0) = 0 and lim
x→x̄

βa(x) =∞.

Let us assume the same mechanism for a stochastic number of bidders and denoted βi :

[0, x̄] → R+ a bidder’s i pure strategy, mapping signals into bids. As we consider only the

symmetric equilibria, we focus on the symmetric pure strategies β ≡ β1 = β2 = ... = βa.

As the number of bidders is stochastic, the definition of the equilibrium strategy concerns

bidders’ beliefs about the number of active bidders. Strategy β is called a equilibrium strategy

if for all bidders i

β(x) ∈ argmaxbi EaE[Ua,i(bi,β(X−i),X)|Xi = x] ∀x ∈ [0, x̄] (3)

where β(X−i) = (β(X1), ...β(Xi−1), β(Xi+1), ..., β(Xa)) and Ea is the expectation operator

with respect to the distribution of the bidders’ beliefs.

The uncertain number of bidders enters the expected utility through the value of the

object for the bidder and the size of the vector of bids b.5. Assume that all bidders except

bidder 1 follow a symmetric – and differentiable – equilibrium strategy. Bidder 1 receives a

signal x and bids an amount b. The expected utility of bidder 1 is

Π(b, x) = EaE[Ua,1(b,β(X−1),X)|X1 = x]

= EaE{[Va,1 − β(Y 1
a )]1β(Y 1

a )≤b − b1β(Y 1
a )>b|X1 = x}

= EaE{E{[Va,1 − β(Y 1
a )]1β(Y 1

a )≤b − b|X1, Y
1
a }|X1 = x}

=
∑
a

pa

∫ β−1(b)

0
[va(x, y)− β(y))]fY 1

a
(y|x)dy − b

[
1−

∑
a

paFY 1
a

(β−1(b)|x)

]
(4)

5It also enters through the collection of the highest bids Q(b) Yet, when #Q(b) > 1 the value of the integral

is zero: at least one of the support is an atom. Thus, we do not need to consider it.
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with β−1(.) the inverse function of β(.). The maximisation of (4) with respect to b leads to:

∑
a

pava(x, β
−1(b))fY 1

a
(β−1(b)|x)

1

β′(β−1(b))
−

[
1−

∑
a

paFY 1
a

(β−1(b)|x)

]
= 0 (5)

At the symmetric equilibrium b = β(x), thus (5) yields

β′(x) =
∑
a

pava(x, x)fY 1
a

(x|x)

1−
∑

i piFY 1
i

(x|x)

=
∑
a

wa(x)β′a(x) (6)

with the weights

wa(x) =
pa(1− FY 1

a
(x|x))

1−
∑

i piFY 1
i

(x|x)
(7)

By (2) and (6) we know that β(.) is increasing. It follows that an equilibrium strategy

must be given by

β(x) =
∑
a

wa(x)βa(x)−
∑
a

∫ x

0
w′a(t)βa(t)dt (8)

Thus, we have a necessary condition about the shape of β. We prove that it is indeed an

equilibrium strategy under an additional assumption, as stated in the next theorem.

Definition 1. Let φ : R2 −→ R be defined by φ(x, y|a) = va(x, y)λ̃(y|x, a) where λ̃(y|x, a) =
fY 1

a
(y|x)

1−
∑

i piFY 1
i

(y|x)
.

φ(., y|a) is the product of va(., y), an increasing function, and λ̃(y|x, a), a non-increasing

function.6 Besides, φ is equivalent to va(x, y)λ(y|x, a) defined by K-M when the number of

agents a is common knowledge.

Assumption 1. φ(x, y|a) is increasing in x for all y.

Theorem 1. Under assumption 1, a symmetric equilibrium in a war of attrition is represented

by

β(x) =
∑
a

wa(x)βa(x)−
∑
a

∫ x

0
w′a(t)βa(t)dt

with βa(t) and wa(t) given by (2) and (7).

6This fact can be proved in a similar way that the hazard rate λ(y|x, a) of the distribution FY 1
a

(y|x) is

non-increasing in x.
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Proof. First, β(.) is a continuous and differentiable function. Indeed, by K-M we know that

βa(.) is a continuous and differentiable function. We have to verify the optimality of β(z)

when bidder 1’s signal is x. Using equation (5), we find that

∂Π

∂β(z)
(β(z), x) =

∑
a

pava(x, z)fY 1
a

(z|x)
1

β′(z)
− 1 +

∑
a

paFY 1
a

(z|x)

=
1

β′(z)

[∑
a

pava(x, z)fY 1
a

(z|x)−
∑
a

pava(z, z)λ̃(z|z, a)(1−
∑
i

piFY 1
i

(z|x))

]
=

1

β′(z)
(1−

∑
i

piFY 1
i

(z|x))
∑
a

pa[φ(x, z|a)− φ(z, z|a)]

When x > z, as φ(x|y, a) is increasing in x, it follows that
∂Π

∂β(z)
(β(z), x) > 0. In a similar

manner, when x < z,
∂Π

∂β(z)
(β(z), x) < 0. Thus,

∂Π

∂β(z)
(β(x), x) = 0. As a result, the

maximum of Π(β(z), x) is achieved for z = x. �

K-M discussed assumption 1 when the number of bidders is common knowledge. This

assumption means that va(., y) increases faster than λ̃(y|x, a) decreases. However, as in wars

of attrition with a common knowledge number of bidders, this is not a problem. Indeed, this

assumption holds if the affiliation between X and Y 1
a is not so strong. We give an example

below to illustrate this discussion with a stochastic number of bidders.7

Example 1. Let f(x) = 2a

2a+1(1 +
∏a
i=1 xi) on [0, 1]a with Xi bidder i’s signals and let

a = {2, 3}. Therefore,

fY 1
2

(x, y) = 4
5(1 + xy) on [0, 1]2

fY 1
3

(x, y1, y2) = 16
9 (1 + xy1y2)1y1≥y2 on [0, 1]3

where Y 1
a and Y 2

a (Y 1
a > Y 2

a ) denote the highest order statistics. First of all, we can easily

verify that the affiliation inequality given holds. We also assume that va(x, y) = a(x + y).

Then computations lead to

fY 1
2

(y|x) = 2
1 + xy

2 + x
and FY 1

2
(y|x) = y

2 + xy

2 + x

fY 1
3

(y|x) = 4y
2 + xy2

4 + x
and FY 1

3
(y|x) = y2 4 + xy2

4 + x

We can also verify that FY 1
a

(y|x) is non-increasing in x. We obtain

φ(x, y|2) = 2(x+ y)
2(1 + xy)(x+ 4)

(x+ 4)(x+ 2)− p2y(2 + xy)(4 + x)− p3y2(4 + xy2)(2 + x)

φ(x, y|3) = 3(x+ y)
4y(2 + xy2)(2 + x)

(x+ 4)(x+ 2)− p2y(2 + xy)(4 + x)− p3y2(4 + xy2)(2 + x)

Thus, assumption 1 holds (some details are given in appendix).

7This example generalizes an example of K-M with two – fixed – bidders.
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Using the results where the number of bidders is common knowledge, the boundary con-

dition β(0) = 0 follows. Thus, if the expected value is bounded whatever the number of

potential bidders, then the bidding strategy will be bounded too. Following the same logic

than K-M, we could determine that limx→x̄ β(x) =∞. Indeed, in this situation,

β(x) ≥
∑
a

pa

∫ x

0
va(y, y)λ̃(y|y, a)dy + min

a
va(z, z) ln

(
1−

∑
a paFY 1

a
(z|z)

1−
∑

a paFY 1
a

(x|z)

)
If we investigate all-pay auctions with stochastic competition, we would show, under as-

sumption8 1, that the equilibrium strategy of all-pay auctions, denoted α(.), is a weighted

average of equilibrium strategies, denoted αa(.), that would be chosen for each number of bid-

ders such as α(x) =
∑

a paαa(x). Thus, the bidders’ beliefs about the number of competitors

is crucial to determine the bidding strategies. Indeed, the stochastic number of bidders does

not modify the bidders’ strategies at the equilibrium of all-pay auctions and wars of attrition

in the same way.

4 An Example: Independent-Private-Values Model

Harstad, Kagel, and Levin (1990) and Harstad, Pekec, and Tsetlin (2008) show that the form

of the equilibrium strategies for winner-pay auctions is such that β(x) =
∑

awa(x)βa(x). As

we seen before, that is still true for the all-pay auction. However, this result is not obvious for

the war of attrition. Indeed, contrary to winner-pay auctions and the all-pay auction, in the

case of wars attrition, it is not a direct result of the first order condition that the equilibrium

strategy should be equal to a weighted average. In this section, we provide an answer only

for the IPV model.

Let us consider that each bidder i assigns value Xi to the object, independently distributed

on [0, x̄] from the identically distribution F . Therefore, the bidding strategy where the number

of bidders a is common knowledge is

βa(x) = (a− 1)

∫ x

0

yf(y)F a−2(y)

1− F a−1(y)
dy

and the bidding strategy with stochastic competition is given by

β(x) =
∑
a

pa(a− 1)

∫ x

0

yf(y)F a−2(y)

1−
∑

i piF
i−1(y)

dy

.

Lemma 1. The equilibrium strategy in a war of attrition is decreasing in a for all a ≥ 2.

Proof.

∂βa
∂a

(x) =

∫ x

0

yf(y)F a−2(y)

(1− F a−1(y))2
[1− F a−1(y) + (a− 1) lnF (y)]dy

As 1− F a−1(y) + (a− 1) lnF (y) is negative for all a, y, the result follows. �

8Indeed, this assumption implies that va(., y)fY 1
a

(y|.) is increasing for all y. The proof is similar to the

proof of the proposition 3 of K-M.
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If β(x) ∈ [βa(x), βā(x)] for all x with βa(x) = mina{βa(x)∀a ∈ N |sa > 0} and βā(x) =

maxa{βa(x)∀a ∈ N |sa > 0} then we can find a vector of weights (za(.))a with
∑

a za(.) =

1, za(.) ≥ 0 for all x such that β(x) =
∑

a za(x)βa(x). Thus, we state:

Proposition 1. In an IPV model, the equilibrium strategy in wars of attrition with stochastic

competition is a weighted average of equilibrium strategies where the number of bidders is

common knowledge.

Proof.

β(x)− β2(x) =

∫ x

0

yf(y)

[1−
∑

i piF
i−1(y)][1− F (y)]

[∑
a

pa(a− 1)F a−2(y)−
∑
a

pa(a− 2)F a−1(y)− 1

]
dy

As
∑

a pa(a− 1)F a−2(y)−
∑

a pa(a− 2)F a−1(y)− 1 is negative, β(x) ≤ β2(x).

If p1 > 0, which means that βa(x) = β1(x), as β1(x) = 0 the result follows. However, it is

relevant to consider the case p1 = 0:

β(x)− βn(x) =

∫ x

0

yf(y)

[1−
∑

i>1 piF
i−1(y)][1− Fn−1(y)]

∑
a>1

pak(y, a)dy

where k(y, a) = (a− 1)F a−2(y) + (n− a)Fn+a−3(y)− (n− 1)Fn−2(y) is positive for all a ≥ 2

and y. Hence the result. �

5 Conclusion

We have shown that in wars of attrition, it does not directly follow from the first order con-

dition that the equilibrium strategy should be equal to a weighted average. This question

remains open for affiliated signals. Even if stochastic competition affects all-pay auctions and

wars of attrition in different ways, we could prove – in the same way than K-M – that it does

not modify the ranking of the expected revenues.

Our results can be useful for many applications of all-pay designs such as in contest theory

and charity auctions. Indeed, recent papers compare all-pay and winner-pay auctions to raise

money for charity and suggest to use an all-pay design. In particular, Goeree, Maasland,

Onderstal, and Turner (2005) show that the second-price all-pay auction is better to raise

money for charity than the first-price all-pay auction and the winner-pay auctions. Charity

auctions may be implemented for special events or on the Internet. A large number of charity

auctions take place while potential bidders do not know the number of competitors.9 As

we do not introduce externalities in the bidders’ payoff, our results could not be applied to

charity auctions. However, as they change some insights in the second-price all-pay auctions

this work lets us open questions for futur research on charity auctions.

9They can know the number of their potential opponents but not the number of their active rivals.

8



6 Appendix

Boundary Condition of the Equilibrium Strategy.

β(x) =
∑
a

pa

∫ z

0
va(y, y)λ̃(y|y, a)dy +

∑
a

pa

∫ x

z
va(y, y)λ̃(y|y, a)dy

≥
∑
a

pa

∫ z

0
va(y, y)λ̃(y|y, a)dy +

∑
a

pa

∫ x

z
va(z, z)λ̃(y|z, a)dy

≥
∑
a

pa

∫ z

0
va(y, y)λ̃(y|y, a)dy + min

a
va(z, z)

∫ x

z

∑
a

paλ̃(y|z, a)dy

=
∑
a

pa

∫ z

0
va(y, y)λ̃(y|y, a)dy + min

a
va(z, z) ln

(
1−

∑
a paFY 1

a
(z|z)

1−
∑

a paFY 1
a

(x|z)

)
Derivation of the Example.

∂

∂x
φ1(x, y|2) =

4

(x+ 2)(1− p2FY 1
2

(y|x)− p3FY 1
3

(y|x))

[
y2 + 2xy2 + 1− (x+ y)(xy + 1)

x+ 2

− (x+ y)(xy + 1)
−p3y4

x+4 + p3(xy2+4)y2

(x+4)2
− p2y2

x+2 + p2(xy2+2y)
(x+2)2

1− p2FY 1
2

(y|x)− p3FY 1
3

(y|x)

]

∂

∂x
φ1(x, y|3) =

12y

(x+ 4)(1− p2FY 1
2

(y|x)− p3FY 1
3

(y|x))

[
y3 + 2xy2 + 2− (x+ y)(xy2 + 2)

x+ 4

− (x+ y)(xy2 + 2)
−p3y4

x+4 + p3y2(xy2+4)
(x+4)2

− p2y2

x+2 + p2y(xy+2)
(x+2)2

1− p2FY 1
2

(y|x)− p3FY 1
3

(y|x)

]
Computations lead to non-negative derivatives.
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