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Abstract

We analyze a market game where firms choose capacities under
uncertainty about future market conditions and make output choices
after uncertainty has unraveled. We show existence and uniqueness
of equilibrium under imperfect competition and provide an intuitive
characterization of equilibrium investment. We show that investment
in oligopoly, in the first and second best solution can be unambigu-
ously ranked, in particular investment incentives are highest in the
First Best solution and lowest under imperfect competition. We finally
demonstrate that intervention of a social planer only at the produc-
tion stage leads to strategic uncertainty at the investment stage and
moreover decreases total investment below the level obtained under
imperfect competition.
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1 Introduction

In this article we investigate the nature of equilibrium outcomes in oligopolis-
tic markets where firms make capacity choices under uncertainty about fu-
ture market conditions and decide on output after the state of nature has
unraveled. The fact that in many industries where non storable goods are
produced, capacity is a long run decision, whereas production may be ad-
justed short–run is a natural motivation for our approach.1 Consider, for
example, the electricity sector or the High Tech industry, where production
has to take place just in time, but capacities have to be installed well in
advance. In those markets firms usually face considerable demand and cost
uncertainty when choosing their capacities. This may be due to uncertainty
about the economic trend, about the success of a new product, about future
weather conditions, or fuel prices, to give just a few examples.

As we will show, the consideration of uncertainty about future market
conditions reveals incentive problems that cannot be addressed in a model
with deterministic demand and cost functions. To see this, consider a modi-
fication of the game described above where at the second stage firms are reg-
ulated to marginal cost pricing whenever unconstrained (and market clearing
prices obtain if capacities are binding). It is obvious that in both, the original
and the modified game, if future market conditions were perfectly known, ca-
pacity choices would equal the (one shot) Cournot quantities and firms would
always operate at full capacity. Thus, intervention at the production stage
would be ineffective, since firms could exercise their market power already
at the investment stage. If capacities are chosen under uncertainty, however,
firms will inevitably be unconstrained if demand turns out to be low. Then,
an intervention at the production stage has an impact on the investment
decision. In our particular example, investment incentives would be lower in
the modified game since being capacity constrained is the more attractive the
lower unconstrained profits are. The above illustrates that for markets with
considerable demand fluctuations a thorough analysis of regulatory interven-
tions cannot be conducted without modeling the investment stage explicitly
and accounting for the uncertainty firms are facing. Our research aims to
provide the appropriate tools to tackle those issues.

In this paper we develop a rather general and manageable framework
to analyze investment and production choices in an imperfectly competi-
tive environment. We thereby close a gap in the literature between studies
that consider investment incentives in perfectly competitive and monopolis-

1Moreover, our model covers a wide range of scenarios like investment prior to pro-
duction on many successive markets, that may be of interest for applied theoretical or
empirical work. We comment on those issues in the conclusion.
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tic markets2, respectively (which are covered by our model as the extreme
cases). We show that under standard regularity conditions on demand and
cost the Cournot two stage market game (where firms invest in capacity under
uncertainty about future market conditions and produce when uncertainty
has unraveled) always has a unique equilibrium. Equilibrium investment in
the Cournot outcome can be characterized by an intuitive first order condi-
tion that implies that marginal revenue generated by an additional unit of
capacity equals marginal investment cost.

In order to asses the impact of strategic behavior on investment incen-
tives and welfare, we also consider the First Best and a Second Best scenario:
the First Best solution specifies welfare maximizing capacities and produc-
tion schedules, while the Second Best solution specifies welfare maximizing
capacity choices given that firms engage in Cournot competition at the pro-
duction stage. We show that total capacity in the First Best is higher than
total capacity in the Second Best solution, which still exceeds equilibrium
investment in the Cournot two stage market game. Our results confirm the
common perception that in oligopolistic markets there is clearly a role for
investment enhancing mechanisms (like capacity obligations or capacity mar-
kets).

The second main objective of our work is to provide a framework that
allows to shed light on the impact of regulatory intervention only at the pro-
duction stage on investment incentives and welfare. In order to elaborate
on this issue, we consider capacity choices by strategic firms that anticipate
optimal regulation at the production stage given the capacities chosen.We
provide an intuitive characterization of investment in any symmetric equilib-
rium. However, existence (but not even uniqueness) of equilibrium can only
be shown for the case of constant marginal production cost. Moreover, in any
symmetric equilibrium of the game with optimal regulation at the produc-
tion stage, total investment is even lower than in the Cournot market game.
Our results have two important implications: First, intervention only at the
production stage gives rise to multiple, and possibly asymmetric equilibria of
the game, and thereby generates strategic uncertainty for the firms. Second,
it is not even clear that such an intervention is welfare enhancing since it
decreases total capacity in the industry. We conclude that interventions only
at the production stage have to be carefully reconsidered in markets with

2The literature on peak–load pricing provides a characterization of investment in those
cases. However, the approach used does not allow to analyze the strategic interaction of
firms. See, for example, Crew and Kleindorfer (1986) or Crew, Fernando, and Kleindorfer
(1994) for an overview. Another related direction of research analyzes production decisions
under demand uncertainty in perfectly competitive and monopolistic markets. See Dreze
and Gabszewicz (1967), Dreze and Sheshinski (1976), Leland (1972), or Sandmo (1971).
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highly fluctuating demand.3

In the economic literature, capacity choice has been extensively analyzed
prior to price competition. This literature was initiated by the seminal article
of Kreps and Scheinkman (1983), and has been generalized and extended by
many authors, among others by Osborne and Pitchik (1986). Reynolds and
Wilson (2000) use the latter to analyze capacity choice prior to Bertrand com-
petition when demand is uncertain. Their analysis reveals that symmetric
pure strategy equilibria (in capacities) do not exist unless cost of investment
is so high that firms want to be constrained in any demand scenario.

Gabszewicz and Poddar (1997) analyze investment under demand uncer-
tainty prior to quantity competition in a framework where both, demand
and marginal cost are linear, and compare it to equilibrium production given
the expected demand (which they call the ”Certainty Equivalent Game”).4

Our analysis in section 3 includes their model as a special case. However, in
terms of generality and technical tractability our approach goes far beyond
the one of Gabszewicz and Poddar.5

Other papers that investigate investment incentives prior to imperfectly
competitive markets were mainly motivated by the liberalization of the elec-
tricity sector, where investment incentives have recently become a central
issue in the policy debate [see, for example, Murphy and Smeers (2003)]. As
a response to the common perception of too low investment incentives, vari-
ous mechanisms have been proposed to raise investments [see e. g. Cramton
and Stoft (2005), or Bushnell (2005) for an overview]. These approaches are
well in line with our result that investment is generally too low prior to imper-
fectly competitive markets. The current policy debate on electricity markets
also provides motivation for our second scenario. There is a huge literature
that asks whether the firms abuse market power in the spot market and —
if so — whether regulatory intervention is desirable.6 Our results point out

3Note that our analysis abstracts from many problems that additionally have to be
considered when judging the welfare effects of a particular regulatory policy. Still we
provide a framework that can be used in order to explicitly analyze different (more realistic)
scenarios at stage two. Examples are the analysis of price cap regulation in Zoettl (2005)
or of forward markets prior to spot market competition in Grimm and Zoettl (2005).

4In order to relate the results of Gabszewicz and Poddar to ours, in appendix B we
analyze a more general version of their ”Certainty Equivalent Game”.

5Our primary goal was to provide a tool to analyze different forms of market orga-
nization on investment incentives. This cannot be achieved by the model of Gabszewicz
and Poddar, since their discrete approach to model demand uncertainty does not allow
to show uniqueness of equilibrium, to analyze an arbitrary number of firms, to use more
general demand and cost functions, and finally does not yield intuitive characterizations
of equilibria.

6See, for example, Wolfram (1999) or Joskow and Kahn (2002).
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that investment incentives may be strongly affected by such an intervention
and thus, the welfare effect may be unclear.

Our paper is organized as follows: In section 2 we state the model. In
section 3 we show existence and uniqueness of equilibrium for the Cournot
two stage market game. Then, in section 4, we characterize the first best
solution. Section 5 is devoted to intervention of a planer at only one of the
two stages: We characterize the socially optimal capacity levels given that
firms compete à la Cournot at the production stage (second best solution)
in section 5.1. In section 5.2, we analyze the incentives to invest in case the
constrained social optimum is implemented at the production stage. Section
6 contains our main result, an unambiguous ranking of total investment in
all scenarios mentioned above. Section 7 concludes.

2 The Model

We analyze a two stage market game where firms have to choose production
capacities under demand and cost uncertainty, and make output choices after
market conditions unraveled. Uncertainty is represented by a parameter Θ
that is distributed on the domain [θ, θ] according to c.d.f. F (θ) with the
corresponding density f(θ) = Fθ(θ).

7 We denote by q = (q1, . . . , qn) the
vector of outputs of the n firms, and by Q =

∑n
i=1 qi total quantity produced

in the market. Market demand in scenario θ ∈ [θ, θ] is given by P (·, θ).
Moreover, all firms have the same cost function in scenario θ, which we
denote by C(·, θ).8 We make the following regularity assumptions:

Assumption 1 (i) Market demand in scenario θ has a finite satiation
point Q(θ), i. e. P (Q, θ) = 0 for all Q ≥ Q(θ). Moreover, for each θ
there exists a prohibitive price P (θ), such that P (0, θ) ≤ P (θ).

(ii) P (Q, θ) is twice continuously differentiable in Q with P (Q, θ) > 0 and
Pq(Q, θ) < 0 for all Q ∈ [0, Q(θ)) and θ ∈ (θ, θ].

(iii) C(qi, θ) is twice continuously differentiable in qi with Cq(qi, θ) ≥ 0 and
Cqq(qi, θ) ≥ 0 for all θ ∈ [θ, θ].

7Throughout the paper we denote the derivative of a function g(x, y) with respect to
an argument z, z = x, y, by gz(x, y), the second derivative with respect to that argument
by gzz(x, y), and the cross derivative by gxy(x, y).

8Note that P and C may depend on independent random events. Then, F (·) approx-
imates the distribution over all potential states of nature that may result from the two
random draws.
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(iv) P (Q, θ) satisfies Pq(Q, θ) + Pqq(Q, θ)qi < 0 for all θ ∈ [θ, θ] and all
qi ∈ [0, Q−Q−i].

9

(v) Both, P (Q, θ) and C(qi, θ) are differentiable in θ with P (0, θ) =
C(0, θ) = 0 and Pθ(Q, θ)− Cqθ(qi) > 0.

(vi) P (Q, θ)qi − C(qi, θ) is (differentiable) strict supermodular in qi and θ,

i. e. d2[P (Q,θ)qi−C(qi,θ)]
dqidθ

> 0 for all i, θ, and q−i.

The situation we want to analyze is captured by the following two stage
game:

At stage one firms simultaneously build up capacities x = (x1, . . . , xn) ∈
[0, Q(θ)]. Capacity choices are observed by all firms. Cost of investment
K(xi) is the same for all firms and satisfies

Assumption 2 (Investment Cost) Investment cost K(xi) is twice con-
tinuously differentiable, with Kx(xi) ≥ 0 and Kxx(xi) ≥ 0.

Throughout the paper we consider only the interesting cases where it holds
that

K(0) <

∫ θ

θ

[P (0, θ)− C(0, θ)]dF (θ). (1)

That is, we assume that the consumers’ expected willingness to pay for the
”first unit” of capacity is always higher than the cost of the first unit of
investment. Note that if the condition does not hold, no firm invests in
capacity.

At stage two, facing the capacity constraints inherited from stage one,
firms simultaneously choose outputs at the spot market. Since demand un-
certainty unravels prior to the output decision, produced quantities depend
on the realized demand scenario. We denote individual quantities produced
in demand scenario θ by q(θ) = (q1(θ), . . . , qn(θ)), and the aggregate quantity
by Q(θ) =

∑n
i=1 qi(θ).

Finally, we state firm i’s stage one expected profit from operating if capac-
ities are given by x and firms plan to choose feasible10 production schedules
qF (θ) for all θ ∈ [θ, θ].

πi

(
x, qF

)
=

∫ θ

θ

[
P

(
QF (θ) , θ

)
qF
i (θ)− C

(
qF
i (θ) , θ

)]
dF (θ)−K (xi) . (2)

9Throughout the paper q−i denotes the quantities produced by the firms other than i,
and Q−i =

∑
j 6=i qj .

10That is, 0 ≤ qF
i (θ) ≤ xi for all θ ∈ [θ, θ], i = 1, . . . , n.
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3 Imperfect Competition

In this section we analyze the two stage market game where at stage one
firms simultaneously invest in capacity under uncertainty about future mar-
ket conditions and at stage two, when uncertainty has unraveled, decide on
production. We call this game the Cournot market game and refer to the
equilibrium investments and quantities as the Cournot outcome.

In this section we show existence and uniqueness of equilibrium of the
Cournot market game and provide and intuitive characterization of equilib-
rium investment. In the following — using backward induction — we proceed
in two steps: we first analyze the equilibria at stage two for all possible in-
vestment levels and then characterize equilibrium capacity choices.

Production Stage In the first step we characterize equilibrium outputs
of the capacity constrained Cournot games at each θ ∈ [θ, θ] given invest-
ment choices x. Note that in order to analyze all possible continuation
games we have to consider also asymmetric investments. In order to sim-
plify the exposition we will order the firms according to their investment
levels, i. e. x1 ≤ x2 ≤ · · · ≤ xn, throughout the paper.

An equilibrium of the capacity constrained Cournot game at stage two in
scenario θ given x, qC(x, θ), satisfies simultaneously for all firms

qC
i (x, θ) ∈ arg max

q

{
P (q + qC

−i, θ))q− C(q, θ)
}

s.t. 0 ≤ q ≤ xi. (3)

Note that due to assumption 1, part (v), all firms are unconstrained for values
of θ close to θ. By assumption 1 parts (ii) to (iv), the unconstrained Cournot
equilibrium [which we denote by q̃C0(θ)] is unique and symmetric for each
θ ∈ [θ, θ].11 From (3) it follows that q̃C0

i (θ) is implicitly determined by the
first order condition

P (nq̃C0
i , θ) + Pq(nq̃C0

i , θ)q̃C0
i = Cq(q̃

C0
i , θ).

Now as θ increases, at some critical value that we denote by θC1(x), firm 1
(the one with the lowest capacity) becomes constrained. The critical demand
scenario is implicitly determined by x1 = qC0

1 (θC1). If it holds that x1 < x2,
then at θC1(x) only firm one becomes constrained. Then, in equilibrium,
firm 1 produces at its capacity bound whereas the remaining firms produce
their equilibrium output of the Cournot game among n − 1 firms given the
residual demand P (Q − x1, θ) [denoted by q̃C1

i (x, θ)], which solves the first

11See, for example Selten (1970), or Vives (2001), pp. 97/98.
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order condition

P (x1 + (n− 1)q̃C1
i , θ) + Pq(x1 + (n− 1)q̃C1

i , θ)q̃C1
i = Cq(q̃

C1
i , θ).

The capacity constrained Cournot equilibrium in the case where one firm is
constrained is a vector qC1(x, θ), where qC1

i (x, θ) = min{xi, q̃
C1(x, θ)}.

As θ increases further, we pass through n+1 cases, from case C0 (no firm
is constrained) to case Cn (all n firms are constrained). Note that two critical
values θCm(x) and θCm+1(x) coincide whenever xm = xm+1, and that it holds
that θCm(x) < θCm+1(x) (by assumption 1 part (v)) whenever xm < xm+1.

Now we are prepared to characterize the capacity constrained Cournot
equilibrium in case Cm where m firms are constrained. In this case, the m
firms with the lowest capacities produce at their capacity bound, whereas
the n−m unconstrained firms produce

q̃Cm
i (x, θ) =

{
qi ∈ R : P

(
m∑

i=1

xi + (n−m) q̃Cm
i , θ

)
(4)

+Pq

(
m∑

i=1

xi + (n−m) q̃Cm
i , θ

)
q̃Cm
i = Cq

(
q̃Cm
i , θ

)
}

,

The equilibrium quantities of the capacity constrained Cournot game in case
Cm are given by

qCm
i (x, θ) = min{xi, q̃

Cm
i (x, θ)}, (5)

and aggregate production in case Cm is

QCm(x, θ) =
n∑

i=1

qCm
i (x, θ). (6)

This allows us finally to pin down the profit of firm i in scenario Cm,

πCm
i (x, θ) =





P
(
QCm, θ

)
xi − C (xi, θ) if i ≤ m,

P
(
QCm, θ

)
q̃Cm
i (x, θ)− C

(
q̃Cm
i (x, θ) , θ

)
if i > m.

(7)

Note that it holds that
dπCm

i

dxi
> 0 only if i ≤ m, and

dπCm
i

dxi
= 0 otherwise, since

a firm’s capacity expansion only affects production at stage two in case the
firm was constrained. Obviously, in this case the derivative must be positive.

Investment Stage Now we are prepared to analyze capacity choices at
the investment stage. The results obtained for the production stage enable
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us to derive a firm i’s profit from investing xi, given that the other firms
invest x−i and quantity choices at stage two are given by qCm(x, θ) for θ ∈
[θCm(x), θCm+1(x)]. Recall that when choosing capacities the firms still face
demand uncertainty. Thus, a firm’s profit from given levels of investments, x,
is the integral over equilibrium profits at each θ given x on the domain [θ, θ],
taking into account the probability distribution over the demand scenarios.
For each θ, firms anticipate equilibrium play at the production stage, which
gives rise to one of the n + 1 types of equilibria, EQC0, . . . , EQCm, . . . ,
EQCn. Note that, by assumption 1, part (v), any x > 0 gives rise to the
unconstrained equilibrium if θ is close enough to θ. As θ increases, more
and more firms become constrained. Thus, a tuple of investment levels that
initially gave rise to an EQC0, then leads to an equilibrium where first one
(then two, three, . . . , and finally n) firms are constrained. In order to simplify
the exposition we again make use of the definitions θC0 ≡ θ and θCn+1 ≡ θ.
Then, the profit of firm i is given by12

πi(x, qC) =
m=n∑
m=0

∫ θCm+1

θCm

πCm
i (x, θ)dF (θ)−K(xi). (8)

Note that at each critical value θCm, m = 1, . . . , n it holds that
πCm−1(x, θCm) = πCm(x, θCm). Thus, πi(x, qC) is continuous. Differentiating
πi(x, qC) yields13

dπi

(
x, qC

)

dxi

=
n∑

m=i

∫ θCm+1(x)

θCm(x)

dπCm
i (x, θ)

dxi

dF (θ)−Kx (xi) (9)

Note that if all firms invest the same, then it holds that either all firms are
constrained, or none, i. e. θC1 = θC2 = · · · = θCn. This implies that for
symmetric investment the first order condition coincides for all firms. We
are able to show the following

Lemma 1 (Cournot (C)) The Cournot market game has a unique equilib-
rium which is symmetric. Equilibrium investments xC

i = 1
n
XC, i = 1, . . . , n

solve
∫ θ

θCn(xC)

[
P

(
XC , θ

)
+ Pq

(
XC , θ

) 1
n

XC − Cq

(
1
n

XC , θ

)]
dF (θ) = Kx

(
1
n

XC

)
. (10)

12Note that it is never optimal for a firm to be unconstrained at θ and thus, we always
obtain θCn ≤ θ.

13Note that continuity of πi implies that due to Leibnitz’ rule the derivatives of the
integration limits cancel out. Moreover πCm

i only changes in xi if firm i is constrained
in scenario FBm, i. e. i ≤ m. Thus, the sum does not include the cases where firm i is
unconstrained, i. e. m < i.
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Proof See appendix A.1. ¤
Let us emphasize two important aspects of our results: First, we could

show that under standard regularity assumptions the Cournot market game
has a unique equilibrium. Second, we find that (symmetric) equilibrium in-
vestment can be characterized by a rather intuitive condition, (10). The
condition simply says that expected marginal revenue generated by an ad-
ditional unit of capacity must equal marginal cost of investment. When
calculating the marginal revenue of capacity, however, one has to take into
account that additional capacity affects a firm’s revenue only in those states
of nature where capacity was binding. Thus, expectation must only be taken
with respect to those scenarios in which the firms are capacity constrained,
i. e. over the interval [θCn

(
xC

)
, θ], and not over the whole domain of Θ.

4 First Best

In order to be able to assess the impact of market power on investment
incentives, in this section we characterize the first best solution, that is,
welfare optimal capacity levels and output choices given the number of firms
in the market. Again we proceed in two steps: We first characterize the
socially optimal production plan at stage two for all possible investment
levels and then characterize socially optimal investment at stage one.

We moreover show that if firms do not act strategically, investment and
production levels coincide with the first best (socially optimal) solution, again
given the number of firms. Later, in section 6, we provide a comparison of
investment under the First Best solution and in the Cournot outcome.

Production Stage We start with the characterization of the socially op-
timal production plan at stage two, given the capacities chosen at stage one,
which may differ across firms. Recall that we order the firms according to
their investment levels, i. e. x1 ≤ x2 ≤ · · · ≤ xn. In the following we specify,
for a given vector of capacities x, the optimal production schedule for any
possible demand scenario (that is, for any possible value of θ).14

Note that due to assumption 1, part (v), all firms are unconstrained for
values of θ close to θ. It is straightforward to show that in the welfare opti-
mum, all unconstrained firms produce the same (due to convex cost). Thus,
the socially optimal total quantity of each firm if all firms are unconstrained
is given by qFB0

i (θ) = {qi ∈ R : P (nqi, θ) = Cq (qi, θ)}.
14With convex cost a characterization of the welfare optimum could probably be given

with less mathematical burden. However, we will need the characterization developed here
also in section 5.2.
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Now, as θ increases, at some critical value, that we denote by θFB1(x),
firm 1 (the lowest capacity firm) becomes constrained. The critical de-
mand scenario θFB1(x) is implicitly defined by x1 = qFB0

1 (θFB1). If it holds
that x1 < x2, then at θFB1(x) only firm 1 becomes constrained and the
socially optimal production plan implies that firm 1 produces at its ca-
pacity bound whereas the remaining firms produce the unconstrained op-
timal quantity given the residual demand P (Q − x1, θ), i. e. q̃FB1

i (x, θ) =
{qi ∈ R : P ((n− 1)qi + x1, θ) = Cq (qi, θ)}. The optimal production plan
in scenario FB1 is a vector qFB1(x, θ), where each element is given by
qFB1
i (x, θ) = min{xi, q̃

FB1
i (x, θ)}.

As θ increases further and more firms become constrained, we pass
through n+1 cases, from case FB0 (no firm is constrained) to case FBn (all n
firms are constrained). Note that two critical values θFBm(x) and θFBm+1(x)
coincide whenever xm = xm+1, and that it holds that θFBm(x) < θFBm+1(x)
(by assumption 1 part (v)) whenever xm < xm+1.

Now we are prepared to characterize the socially optimal production plan
and social welfare generated in case FBm, where m firms are constrained.
In this case, the m firms with the lowest capacities produce at their capacity
bound, whereas the n − m unconstrained firms produce the unconstrained
optimal quantity given the residual demand P (Q−∑m

i=1 xi, θ), i. e.

q̃FBm
i (x, θ) =

{
qi ∈ R : P

(
m∑

j=1

xj + (n−m)qi, θ

)
= Cq(qi, θ)

}
. (11)

We denote the optimal production plan in case FBm by qFBm(x, θ) where
each element is given by

qFBm
i (x, θ) = min{xi, q̃

FBm
i (x, θ)} i = 1, . . . , n. (12)

Consequently, the optimal total quantity produced in case FBm is

QFBm(x, θ) =
n∑

i=1

qFBm
i (x, θ). (13)

All this allows us finally to pin down maximal social welfare generated in
demand scenario θ ∈ [θFBm, θFBm+1] (where, given x, the m lowest capacity
firms are constrained) as

W FBm (x, θ) =

∫ QFBm(x,θ)

0

P (Q, θ) dQ−
n∑

i=1

C
(
qFBm
i (x, θ) , θ

)
. (14)

Note that W FBm only depends on xi if firm i is constrained in scenario m,
that is if i ≤ m.
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Investment Stage Let us now characterize the welfare maximizing level
of investment. Total expected welfare is obtained by integrating over all
demand realizations. Since the functional form of the maximal attainable
welfare changes as we pass from case FBm to case FBm + 1, we have to
integrate piecewisely. In order to facilitate exposition, we define θFB0 = θ
and θFBn+1 = θ. Then, welfare generated by the choice of capacities x, given
the optimal production plan is implemented at stage two is

W(x, qFB) =
n∑

m=0

∫ θFBm+1(x)

θFBm(x)

W FBm(x, θ)dF (θ)−
n∑

i=1

K (xi) . (15)

Note that at each critical value θFBm, m = 1, . . . , n, it holds that
W FBm−1(x, θFBm) = W FBm(x, θFBm). Thus, W(x) is continuous. Differ-
entiating W(x) yields

dW(x, qFB)

dxi

=
n∑

m=i

∫ θFBm+1(x)

θFBm(x)

dW FBm (x, θ)

dxi

dF (θ)−Kx (xi) . (16)

Obviously, the n first order conditions are simultaneously satisfied for all
firms if all firms invest the same. We can show the following

Lemma 2 (First Best (FB)) In the welfare optimum, each firm invests
xFB

i = 1
n
XFB, i = 1, . . . , n, where xFB solves

∫ θ

θFBn(xFB)

[
P

(
XFB, θ

)− Cq

(
1

n
XFB, θ

)]
dF (θ) = Kx

(
1

n
XFB

)
. (17)

Proof See appendix A.2. ¤
We obtain a rather intuitive characterization also of the first best invest-

ment level. The condition says that in the welfare optimum capacity should
be chosen such that expected marginal social welfare of additional capac-
ity [LHS of (17)] should equal marginal cost of investment [RHS of (17)].
Again it is important to notice that expectation is only taken over those
scenarios where the firms are actually constrained given the scheduled stage
two–production, that is, over the interval [θFBn(xFB), θ].

Remark 1 (Non-Strategic Firms) For each number of firms, n, if firms
do not behave strategically (i. e. they act as price takers at stage two and
ignore their impact on total capacity at stage one), firms invest and produce
optimally from a social welfare point of view.

Proof See appendix A.3 ¤
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5 Partial Intervention

This section is thought to shed light on the effects that intervention at only
one of the two stages has on investment incentives. In the following sec-
tion (5.1) we consider implementation of the welfare optimal capacity level
at stage one given that firms strategically choose their outputs at the pro-
duction stage (Second Best). In section 5.2 we analyze strategic capacity
choices if firms anticipate implementation of the welfare optimal production
schedule given the capacities chosen at stage two (Optimal Regulation at the
Production stage, ORP).15 Table 2 relates those scenarios to the scenarios
already analyzed in sections 3 and 4.

Objective at the Production
Stage

Profit Welfare
Objective Cournot ORP

at the Profit XC XORP

Investment Second Best First Best
Stage Welfare XSB XFB

Table 1: The four scenarios analyzed.

5.1 Second Best

In order to investigate whether the capacity choices of strategic firms are
locally inefficient, in this section we characterize the socially optimal invest-
ment levels given that firms play the capacity constrained Cournot equilib-
rium at the production stage. Later, in section 6, we will provide a compar-
ison with capacity levels in the First Best and in the Cournot outcome.

If, at stage two, firms play the capacity constrained Cournot equilib-
rium16 qCm

i (x, θ), i = 1, . . . , n, aggregate production in case Cm is given by
QCm(x, θ) as defined in (6). Consequently, total welfare generated in demand
scenario θ ∈ [θCm(x), θCm+1(x)] is

WCm(x, θ) =

∫ QCm(x,θ)

0

P (Q, θ)dQ−
n∑

i=1

C(qCm
i (x, θ), θ). (18)

15We abstract from all informational problems by assuming that a social planer imple-
ments the welfare optimum at one stage given that firms behave strategically at the other
one.

16See the characterization provided in section 3.
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Note that WCm(x, θ) depends on xi only if firm i is constrained in case Cm,
i. e. if i ≤ m, or, equivalently, qCm

i (x, θ) = xi.
Welfare generated by the choice of capacities x, given that the firms play

the capacity constrained Cournot equilibrium at stage two is given by

W(x, qC) =
n∑

m=0

∫ θCm+1(x)

θCm(x)

WCm(x, θ)dF (θ)−
n∑

i=1

K (xi) (19)

Note that at each critical value θCm, m = 1, . . . , n, it holds that
WCm−1(x, θCm) = WCm(x, θCm). Thus, W(x, qC) is continuous. Differen-
tiation yields

dW(x, qC)

dxi

=
n∑

m=i

∫ θCm+1(x)

θCm(x)

dWCm (x, θ)

dxi

dF (θ)−Kx (xi) (20)

Obviously, the n first order conditions are simultaneously satisfied for all
firms if all firms invest the same. We can indeed show the following

Lemma 3 (Second Best (SB)) The capacities xSB
i = 1

n
XSB, i = 1, . . . , n,

a social planner would like to implement prior to Cournot competition at
stage two solve

∫ θ

θCn(xSB)

[
P

(
XSB, θ

)− Cq

(
1

n
XSB, θ

)]
dF (θ) = Kx

(
1

n
XSB

)
(21)

Proof See appendix A.4. ¤

5.2 Optimal Regulation at the Production Stage

In order to investigate the impact of stage two–intervention on capacity
choices in oligopolistic markets, we analyze strategic capacity choices at stage
one given that firms anticipate that at stage two the socially optimal solu-
tion is implemented (e.g. by a social planer). A comparison of equilibrium
investment in this scenario with investments in the First Best, Second Best,
and Cournot solution is provided in section 6.

If the competitive outcome is implemented at stage two, outputs coincide
with the welfare maximizing quantities characterized in equation (12). Thus,
a firm i’s stage two–profit in scenario θ ∈ [θFBm(x), θFBm+1(x)] where firms
have invested x and m firms turn out to be constrained is given by

πFBm
i (x, θ) =





P
(
QFBm(x, θ), θ

)
xi − C (xi, θ) if i ≤ m,

P
(
QFBm(x, θ), θ

)
q̃FBm
i (x, θ)− C

(
q̃FBm
i (·) , θ

)
if i > m.

14



The stage one expected profit of firm i is obtained by integrating over all
profits associated with each demand realization,

πi(x, qFB) =
n∑

m=0

∫ θFBm+1(x)

θFBm(x)

πFBm
i (x, θ)dF (θ)−K (xi) . (22)

Thus, the first order condition is

dπi

(
x, qFB

)

dxi

=
n∑

m=i

∫ θFBm+1(x)

θFBm(x)

dπFBm
i (x, θ)

dxi

dF (θ)−Kx (xi) . (23)

Again, we immediately see that if investment is symmetric across firms, only
the last integral in (23) remains positive. We show the following

Lemma 4 (Optimal Regulation at the Production Stage (ORP))

(i) In any symmetric equilibrium of the game where the competitive out-
come is implemented at stage two, firms choose capacities xORP

i =
1
n
XORP , i = 1, . . . , n such that

∫ θ

θF Bn(xORP )

[
P

(
XORP , θ

)
+ Pq

(
XORP , θ

) XORP

n
− Cq

(
XORP

n
, θ

)]
dF (θ) (24)

= Kx

(
XORP

n

)
.

(ii) Suppose that marginal cost Cq(q, θ) is constant in q. Then , there exists
at least one symmetric equilibrium, but there may be more than one.
No asymmetric equilibria exist.

(iii) The game always has a unique symmetric (degenerate) equilibrium if
XC ≤ Q̃C0(θ), i. e. capacity in the Cournot outcome is lower than
the unconstrained Cournot equilibrium production at θ. In such an
equilibrium firms are constrained at any θ ∈ [θ, θ].

Proof See appendix A.5 ¤
Note that we cannot prove existence and uniqueness of a symmetric equi-

librium in the general case while for constant marginal cost existence (but
not uniqueness) can be shown. The basic problem is that in neither case
the stage one profit is quasiconcave, which makes standard analysis impos-
sible. In the case of linear marginal cost, however, we can exploit recent
insights on oligopolistic competition that makes use of lattice theory (Amir
and Lambson (2000)). In the general case (i. e. strictly convex production
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cost), however, the game cannot be reformulated as a supermodular game
and thus, even more sophisticated techniques do not help.

Finally let us draw the reader’s attention to the degenerate case men-
tioned in part (iii) of the lemma. There we show that the game with optimal
regulation at stage two always has a unique equilibrium in case that even
in the Cournot market game (see section 3) firms always want to be con-
strained, even at the lowest realization of θ. In section 6 we will provide
further intuition on this special case.

6 Comparison of Investment Levels

In this section compare equilibrium investments in the scenarios analyzed in
sections 3 to 5. Moreover, in the discussion of our result we demonstrate how
the approach can be used to easily obtain insights on the effect that regulatory
intervention or market re–organization have on investment incentives, far
beyond the stylized scenarios we analyzed.

Theorem 1 Suppose that assumptions 1 and 2 hold.

(i) For any finite number of firms, n, it holds that

– Capacity in the Cournot outcome is too low from a social welfare
point of view, i. e. XSB

n > XC
n .

– Capacity in any symmetric stage two–regulated outcome is lower
than in the Cournot outcome, i. e. XC

n ≥ XORP
n .

– The first best solution yields the highest capacity level among all
scenarios.

Summarizing, it holds that XFB
n ≥ XSB

n > XC
n ≥ XORP

n .

(ii) As the number of firms approaches infinity, investment levels in all
scenarios coincide, i. e. XFB

∞ = XSB
∞ = XC

∞ = XORP
∞ .

Proof Part (i) Consider the first order conditions that implicitly define
total capacities in the four scenarios considered, as given in lemmas 1 to 4.
Note that (i) Pq(X, θ) < 0, (ii) θCn(x) > θFBn(x) for all x17, and that (iii) at

(below, above) the demand realization θCn(xC) we have that Pq(X
C , θ)XC

n
+

17The latter is due to the fact that firms get already constrained at lower demand
realizations if they behave competitively and therefore produce where demand equals
marginal cost.

16



P (XC , θ)−Cq(
1
n
XC , θ) = 0 (< 0, > 0). Thus, the lefthand–sides of the first

order conditions can be ordered as follows:

FB :
∫ θ

θF Bn(x)

[
P (X, θ)− Cq

(
1
n

X, θ

)]
dF (θ) (25)

SB : ≥
∫ θ

θCn(x)

[
P (X, θ)− Cq

(
1
n

X, θ

)]
dF (θ)

C : >

∫ θ

θCn(x)

[
Pq (X, θ)

1
n

X + P (X, θ)− Cq

(
1
n

X, θ

)]
dF (θ)

ORP : ≥
∫ θ

θF Bn(x)

[
Pq (X, θ)

1
n

X + P (X, θ)− Cq

(
1
n

X, θ

)]
dF (θ)

Note that according to lemmas 1 to 4, the total capacities are deter-
mined as the values of X where the respective term equals Kx

(
1
n
XZ

)
,

Z ∈ {FB, SB, C, ORP}. Recall that in all cases we get interior solutions
and note that the above terms (except for the one that determines XORP )
are decreasing in X, while Kx is increasing in X. This immediately implies
XFB ≥ XSB > XC .

In order to see why the ranking stated in the theorem also holds for
ORP , note that the above term in scenario C is strictly decreasing in X,
whereas in scenario ORP it satisfies LHS(0) > Kx(0) (by assumption 2)
and LHS(X) < Kx(X) for X high enough (by assumption 1 (i)). Since
Kx(X) is increasing in X, this immediately implies that for any equilibrium
investment XORP it holds that XC ≥ XORP .

Part (ii) As n approaches infinity, all first order conditions collapse to∫ θ

θ
[P (X, θ)− Cq(0, θ)]dF (θ) = Kx(0). ¤
In the following we derive exact conditions under which the weak inequal-

ities from theorem 1 are strict, and hold with equality, respectively. They
hold with equality whenever already the capacity choice determines produc-
tion in any demand scenario θ ∈ [θ, θ], that is, if firms are always constrained
at the production stage. In particular:

Theorem 2 (Degenerate Cases) Suppose f(θ) > 0 for all θ ∈ [θ, θ].
Then it holds18

(i) XC ≤ Q̃C0(θ) ⇔ XC = XORP ,

(ii) XFB ≤ Q̃C0(θ) ⇔ XFB = XSB.

18The assumption f(θ) > 0 is only needed for the ”⇐”-direction. ”⇒” always holds.
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Proof Let x0 be a vector of equal capacities summing up to X0. We
have θ ≤ θFBn(x0) ≤ θCn(x0) for all x0 and both, θFBn(x0) and θCn(x0) are
increasing in X0.
(i) If XC ≤ Q̃C0(θ), then θ = θCn(xC). This implies that θ = θFBn(xORP ) =
θCn(xC) (since XORP ≤ XC). Then the first order conditions (10) and (24)
collapse since the lower limit of integration is given by θ. This proves ”⇒”.
In order to prove ”⇐”, note that XC > Q̃C0(θ) implies θ ≤ θFBn(xORP ) <
θCn(xC).19 Then the the lower limit of integration in first order conditions
(10) and (24) does not coincide which implies XORP < XC if f(θ) > 0 for
all θ ∈ [θ, θ].
(ii) The proof works analogously to part (i). ¤

Genuine Uncertainty Degenerate Cases

Q̃C0(θ) < XC XC ≤ Q̃C0(θ) < XFB XFB ≤ Q̃C0(θ)

XORP < XC XORP = XC

XSB < XFB XSB = XFB

Table 2: Degenerate Cases and Equivalence of Scenarios.

If condition (i) of theorem 2 holds, in the Cournot market game (section
3) firms want to be constrained at the production stage in any state of nature
θ ∈ [θ, θ]. Since the incentive to be constrained is higher in case of optimal
regulation at stage two, the solutions of C and ORP collapse in this case.
Moreover, comparison with a result by Reynolds and Wilson (2000) shows
that under condition (i) also a game where firms invest prior to Bertrand
competition at stage two yields the same capacity as C and ORP .20

This result is well known in the absence of uncertainty (when obviously
condition (i) is always satisfied). In this case, the equivalence of the Cournot
and the Bertrand outcome has already been shown by Kreps and Scheinkman

19Note that whenever θ < θCn(xC), then it holds that θFBn(xORP ) < θCn(xC).
20Reynolds and Wilson show that under condition (i) capacity choice prior to Bertrand

competition yields the same outcome as capacity choice in a game where firms cannot
adjust their production after uncertainty unraveled. It is easy to show that under condition
(i) the latter game yields the same outcome as our Cournot market game (which clearly is
not the case if condition (i) does not hold). Reynolds and Wilson fail to recognize, however,
their this game does not have a unique equilibrium in case of genuine uncertainty (which
is why part (ii) of their theorem is incomplete).
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(1983). Our results show that those findings also hold under a weaker con-
dition that basically imposes a restriction on the variance of θ. Obviously,
condition (i) describes a degenerate environment where uncertainty does not
matter much. Under genuine uncertainty, where firms are unconstrained in
at least some states of nature, our analysis demonstrates that in fact market
organization at stage two matters a lot.21

If condition (ii) holds, at the welfare maximizing (First Best) capacity
level even strategic firms are constrained in any demand scenario θ ∈ [θ, θ]
at stage two. Notice that condition (ii) is stronger than condition (i) [since
XFB > XC , as we have shown in theorem 1]. Consequently, (ii) can only hold
in a degenerate environment where uncertainty is not an important issue.

Why the level of uncertainty is not the only decisive factor for a equiva-
lence of XFB and XSB can best be illustrated in case of certain demand. At
the production stage, strategic firms play either their Cournot quantity given
marginal production cost, or their capacity, whichever is lower. This implies
that even under certainty the First Best and the Second Best outcome co-
incide only in those cases where the First Best capacity level is below the
Cournot quantities at stage two. Thus, condition (ii) requires that marginal
capacity cost is sufficiently high compared to marginal production cost and
that uncertainty does not matter much. As we have shown in our analysis,
however, under genuine uncertainty the First Best solution always implies
higher investment than the second best solution, independent of marginal
capacity and production cost.

Let us finally draw the reader’s attention to the particular structure of
all four first order conditions. They all equalize marginal profit or welfare of
additional capacity [LHSs of the first order conditions as listed in equation
(25)] with marginal cost of capacity [RHS] (see lemmas 1 to 4). Note that
the stage one–objective is reflected only in the integrand at the LHS while
the stage two–objective enters exclusively into the lower limit of integration.
That is, we integrate over marginal profit in cases where the firms maximize
profits at stage one (C and ORP ) and over marginal welfare in cases where
welfare is the stage one-objective (FB and SB). The game at stage two
enters only in form of the lower limit of integration, which is the state of
nature from which on firms are constrained given the capacities chosen at
stage one (i. e. θCn(x) in the case of Cournot competition at stage two and
θFBn(x) if the welfare optimum is implemented).

21For the Bertrand market game Reynolds and Wilson (2000) show that under genuine
uncertainty equilibria with equal capacities of the firms do not exist.
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7 Conclusion

In this paper we have provided a general model of strategic investment deci-
sions under uncertainty prior to imperfectly competitive markets. We have
shown existence and uniqueness of equilibrium and provided an intuitive
characterization of equilibrium investment. We found that increasing capac-
ity is desirable from a social welfare point of view. We also demonstrated
that intervention only at the production stage leads to strategic uncertainty
at the investment stage and, moreover, decreases total investment. Thus, in
markets with considerable demand fluctuations, (partial) intervention only
at the market stage has to be carefully reconsidered.

The particular structure of the first order conditions discussed at the
end of the previous section moreover allows several conjectures about the
desirability of interventions at either stage one or stage two. First, our model
suggests that any stage two–intervention which increases production above
the level obtained in the Cournot outcome in every state of the world reduces
investment. Second, increasing the capacity above the level freely chosen by
the firms is desirable from a social welfare point of view whenever firms
exercise market power to some extent at the production stage.

While the model provides a solid intuition for how investment incentives
and welfare are affected by regulatory intervention, specific market designs
under consideration still have to be analyzed carefully in order to obtain
reliable policy conclusions. In this respect, our model provides a tractable
framework for the analysis of different scenarios at the market stage. The
framework captures the stylized fact that at the time when they make their
investment decisions firms face considerable uncertainty both about future
demand and production cost, and probably also with respect to future regu-
latory regimes. Let us outline several directions of research that can directly
benefit from the analysis done in this paper.

The most obvious application of the model is to modify the game played
at the second stage in order to analyze how different market designs or regu-
latory interventions affect investment incentives and welfare. However, mod-
eling a more complicated strategic context at the production stage usually
comes at the cost of loosing some generality (i. e. restriction to linear de-
mand). Grimm and Zoettl (2005) analyze how investment incentives are
affected by the introduction of forward markets prior to spot trading and
Zoettl (2005) considers price cap regulation at the spot market. Whereas
the results of Grimm and Zoettl (2005) confirm the intuition that making
the spot market more competitive decreases investments, Zoettl (2005) finds
that price caps at stage two may actually increase investment incentives. The
reason is that price caps eliminate an important feature of the present model,
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i. e. prices do not rise in case of insufficient capacity, which crucially affects
the incentives.

A second line of research for which the current model serves as a starting
point is the analysis of capacity expansion, probably even allowing the choice
between different technologies. On the one hand, such a model would allow
to analyze the effect of measures like emission permits in electricity markets
that affect variable costs of different technologies to different extents. On
the other hand it could serve as the theoretical benchmark that allows to
estimate market power at the investment stage.

A Proofs

A.1 Proof of Lemma 1

We prove the lemma in two parts. In part I we show existence and in part
II uniqueness of the equilibrium. For the proof we first need to establish the
following

Property 1 (Monotonicity of θCm) dθCm(x)
dxi

is strictly positive if i ≤
m, and zero otherwise.

Proof θCm(x) is the demand realization from which on firm m cannot play
its unconstrained output any more. At θCm(x) it holds that qC

i (θCm(x)) =
q̃Cm(θCm(x)) = xm for all i ≥ m and qC

i (θCm(x)) = xi < xm for all i < m.
Thus, θCm(x) is implicitly defined by the conditions

P

(
m∑

i=1

xi + (n−m)xm, θCm(x)

)

+Pq

(
m∑

i=1

xi + (n−m)xm, θCm(x)

)
xm − Cq

(
xm, θCm(x)

)
= 0.

Differentiation with respect to xi, i < m, yields

Pq (·) + Pθ (·) dθCm (x)
dxi

+ Pqq (·)xm + Pqθ (·)xm
dθCm (x)

dxi
− Cqθ (·) dθCm (x)

dxi
= 0,

and solving for dθCm(x)
dxi

we obtain

dθCm (x)
dxi

= − Pq (·) + Pqq (·) xm

Pθ (·) + Pqθ (·)xm − Cqθ (·) > 0

due to assumption 1, parts (iv) and (vi) [note that the expression in the
denominator is the cross derivative which was assumed to be positive in part
(vi) of assumption 1].
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Differentiation with respect to xi, i = m, yields

(n−m + 2)Pq (·) + Pθ (·) dθCm (x)
dxi

+(n−m + 1)Pqq (·)xm + Pxθ (·)xm
dθCm (x)

dxi
− Cxx (·)− Cqθ (·) dθCm (x)

dxi
= 0,

and solving for dθCm(x)
dxi

we obtain

dθCm (x)
dxi

= − (n−m + 2)Pq (·) + (n−m + 1)Pqq (·)xm − Cxx (·)
Pθ (·) + Pqθ (·) xm − Cqθ (·) > 0,

also due to assumption 1, parts (iv) and (vi). Finally, differentiation with
respect to xi, i > m, yields

Pθ (·) dθCm (x)
dxi

+ Pxθ (·) xm
dθCm (x)

dxi
− Cqθ (·) dθCm (x)

dxi
= 0,

which implies that dθCm(x)
dxi

= 0 for i > m. ¤

PartI: Existence of Equilibrium In the following we show that a sym-
metric equilibrium of the two stage Cournot market game exists, and that
equilibrium choices xC

i = 1
n
XC , i = 1, . . . , n, are implicitly defined by equa-

tion (10). For this purpose it is sufficient to show quasiconcavity of firm
i’s profit given the other firms invest xC

−i, πi(xi, x
C
−i), which we do in the

following.
Note that πi(xi, x

C
−i) is defined piecewisely. For xi < xC

i , we have to
examine to profit of firm 1 (by convention the lowest capacity firm) given
that x2 = x3 = · · · = xn. Since this implies that θC2 = · · · = θCn and thus it
follows from (8) that

π1(x1, x
C
−1) =

∫ θC1(x)

θ

πC0
1 (x, θ)dF (θ) +

∫ θCn(x)

θC1(x)

πC1
1 (x, θ)dF (θ) (26)

+
∫ θ

θCn(x)

πCn
i (x, θ)dF (θ)−K(x1)

For xi > xC
i , the profit of firm i is the profit of the highest capacity firm

(firm n according to our convention), given all other firm have invested the
same, i. e. x1 = · · · = xn−1. We get

πn(xn, xC
−n) =

∫ θCn−1(x)

θ

πC0
n (x, θ)dF (θ) +

∫ θCn(x)

θCn−1(x)

πCn−1
n (x, θ)dF (θ) (27)

+
∫ θ

θCn(x)

πCn
n (x, θ)dF (θ)−K(x1)
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(i) The shape of πi(xi, x
C
−i) for xi > xC

i : The second derivative of the
profit function πn is given by22

d2πn

(dxn)2
= −dθCn(x)

dxn

[
dπCn

n (x, θCn)
dxn

]

︸ ︷︷ ︸
=0 (xn is opt. atθCn)

f(θCn)+
∫ θ

θCn(x)

d2πCn
n (x, θ)

(dxn)2︸ ︷︷ ︸
<0 by A1 part (iv)

f(θ)dθ < 0. (28)

Note that the first term cancels out and the second term is negative by
concavity of the spot market profit function (implied by assumption 1, part
(iv)). We find that for xi > xC

i , πi(xi, x
C
−i) is concave, which implies that

upwards deviations are not profitable.

(ii) The shape of πi(xi, x
C
−i) for xi < xC

i : This region is more difficult
to analyze since the profit function π1(x1, x

C
−1) is not concave. But we can

show quasiconcavity of π1(x1, x
C
−1). For this purpose we need the following

properties of marginal profits at stage two for the cases (C1) and (Cn) [that
can be derived from from equations (7)].

Property 2 [Marginal Profits at Stage Two in Cases (C1) and
(Cn)]

(i)
dπC1

1 (x,θ)

dx1
≥ 0.

(ii)
dπCn

1 (x′1,x−1,θ)

dx1
≥ dπC1

1 (x′′1 ,x−1,θ)

dx1
≥ 0 for x′1 < x′′1.

Proof (i) The first part holds due to the fact in case firm 1 is constrained,
i. e. (θ ≥ θC1), firm 1 would like to produce more than x1 for all demand
realizations θ ≥ θC1, which, however, is not possible due to the capacity
constraint.
(ii) The first inequality follows from concavity of the profit functions in the
spot markets, which is implied by assumption 1, part (iv). Thus, the first
order condition at each spot-market is decreasing in x1 until q̃C0

i , which
immediately yields the first inequality of part (ii). The second inequality
is due to the fact that in case all firms are constrained, i. e. (θ ∈ [θCn, θ]),
firm 1 would like to produce more for all demand realizations θ (which is not
possible because it is constrained). ¤

Now we can use property 2 in order to complete the proof of existence
(part I). We can show quasiconcavity of π1(x1, x

C
−1) by showing that

dπ1(x
0
1, x

C
−1)

dx1

≥ dπ1(x
C
1 , xC

−1)

dx1

= 0 for all x0
1 < xC

1 .

22It is obvious that there is no incentive for any firm to deviate such that it is uncon-
strained at θ. Thus, we only consider the case that all firms are constrained at θ.
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This holds true, since [compare also equation (9)]

dπ1(x0
1, x

C
−1)

dx1
=

∫ θCn(x0
1,xC

−1)

θC1(x0
1,xC

−1)

dπC1
1 (x0

1, x
C
−1, θ)

dx1
dF (θ)

︸ ︷︷ ︸
>0 by property 2, part (i)

+
∫ θ

θCn(x0
1,xC

−1)

dπCn
1 (x0

1, x
C
−1, θ)

dx1
dF (θ)

>

∫ θ

θCn(x0
1,xC

−1)

dπCn
1 (x0

1, x
C
−1, θ)

dx1
dF (θ)

=
∫ θCn(xC

−1,xC
−1)

θCn(x0
1,xC

−1)

dπCn
1 (x0

1, x
C
−1, θ)

dx1
dF (θ)

︸ ︷︷ ︸
≥0 by properties 1 and 2, part (ii)

+
∫ θ

θCn(xC
1 ,xC

−1)

[
dπCn

1 (x0
1, x

C
−1, θ)

dx1
− dπCn

1 (xC
1 , xC

−1, θ)
dx1

]
dF (θ)

︸ ︷︷ ︸
≥0 by property 2, part (ii)

+
∫ θ

θCn(xC
1 ,xC

−1)

dπCn
1 (xC

1 , xC
−1, θ)

dx1
dF (θ)

︸ ︷︷ ︸
=

dπi(xC )
dxi

=0 [recall that θC1(xC)=θCn(xC)]

≥ 0.

To summarize, in part I we have shown that πi(xi, x
C
i ) is quasiconcave.

We conclude that the first order condition given in lemma 1 indeed charac-
terizes equilibrium investment in the Cournot market game.

Part II: Uniqueness In this part we show that (i) xC is the unique sym-
metric equilibrium and (ii) that there are no asymmetric equilibria.
(i) xC is the unique symmetric equilibrium. If capacities are equal,
i. e. x0

1 = x0
2 = · · · = x0

n, we have

dπi(x0)
dxi

=
∫ θ

θCn(x0)

[P (nx0
i , θ) + Pq(nx0

i , θ)x
0
i − Cq(x0

i , θ)]f(θ)dθ −Kx(x0
i ).

Differentiation yields23

d2πi(x0)
(dxi)2

=
∫ θ

θCn(x0)

[
(n + 1)Pq(nx0

i , θ) + nPqq(nx0
i , θ)x

0
i − Cqq(x0

i , θ)
]
dF (θ)−Kxx(x0

i ) < 0,

which is negative due to assumption 1 part (iv). Thus, since dπi(x
C)

dxi
= 0

and moreover πi(x) is concave along the symmetry line, no other symmetric
equilibrium can exist.

23Differentiation works as in (28).
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(ii) There cannot exist an asymmetric equilibrium. Any candidate for
an asymmetric equilibrium x̂ can be ordered such that x̂1 ≤ x̂2 ≤ · · · ≤ x̂n,
where at least one inequality has to hold strictly. This implies x̂1 < x̂n. The
profit of firm n can be obtained by setting i = n in equation (8), and the
first derivative is given by

dπn

dxn

=

∫ θ

θCn(x)

dπCn
n (x, θ)

dxn

f(θ)dθ −Kx(xn).

It is easy to show that firm n’s profit function is concave by examination of
the second derivative [see equation (28)]. Thus, any asymmetric equilibrium

x̂, if it exists, must satisfy dπn(x̂)
dxn

= 0. We now show that whenever it holds

that dπn(x̂)
dxn

= 0, firm 1’s profit is increasing in x1 at x̂ (which implies that no
asymmetric equilibria exist).

From equation (9) it follows that the first derivative of firm 1’s profit
function is given by

dπ1

dx1

=

∫ θC2(x)

θC1(x)

dπCn
1 (x, θ)

dx1

f(θ)dθ + · · ·+
∫ θ

θCn(x)

dπCn
1 (x, θ)

dx1

f(θ)dθ −Kx(x1).

Note that all the integrals in dπ1

dx1
are positive since firm 1 is constrained at

all demand realizations and therefore would want to increase its production.
Thus, we have

dπ1

dx1
>

∫ θ

θCn(x)

dπCn
1 (x, θ)
dx1

f(θ)dθ −Kx(x1),

where the RHS are simply the last two terms of dπ1

dx1
. Note furthermore that

x̂1 < x̂n also implies that Kx(x̂1) < Kx(x̂n) (due to assumption 2) and

dπ1(x̂)
dx1

= P (x̂, θ) + Pq(x̂, θ)x̂1 − Cq(x̂1, θ) < P (x̂, θ) + Pq(x̂, θ)x̂n − Cq(x̂n, θ) =
dπn(x̂)

dxn

(due to assumption 1, part (iv)). Now we can conclude that

dπ1

dx1
>

∫ θ

θCn(x)

dπCn
1 (x, θ)
dx1

f(θ)dθ −Kx(x1) >

∫ θ

θCn(x)

dπCn
n (x, θ)
dxn

f(θ)dθ −Kx(xn) = 0.

The last equality is due to the fact that this part is equivalent to the first
order condition of firm n, which is satisfied at x̂ by construction. To Sum-
marize, we have shown that dπ1

dx1
> 0, which implies that there exist no asym-

metric equilibria, since at any equilibrium candidate, firm 1 has an incentive
to increase its capacity.
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A.2 Proof of Lemma 2

Part I: Existence Note that on a compact set any continuous function
has at least one global maximum. The result applies to our setup since
W(x, qFB) is continuous and x ∈ [0, Q(θ)]. Now it remains to show that the
optimal investment levels cannot be asymmetric (see part II) and that the
symmetric solution as characterized in lemma 2 is unique (see part III).

Part II: Symmetry We first show that the optimal capacity choices can-
not be asymmetric across firms. We start at the first order condition (16),
which at the optimal solution has to hold simultaneously for all firms. It can
be rewritten as follows:

dW(x, qFB)

dxi

=
n∑

m=i

∫ θFBm+1(x)

θFBm(x)

dW FBm (x, θ)

dxi

dF (θ)−Kx (xi) (29)

Let us first define the relevant industry marginal cost function,, given the
capacities chosen by the firms, x. Note that in any of the cases FBm, m =
1, . . . , n, the unconstrained firms produce the same in the socially optimal
solution. Thus, in case FB0, the relevant industry marginal cost is given by
Cq(

Q
n
, θ). Increasing Q leads, at some point, to a situation where x1 = Q

n
. A

further increase of Q then has to be produced by firms 2 to n, and thus, from
here on industry marginal cost is given by C(Q−x1

n−1
, θ). Continuation of this

argument yields a general formulation of the industry marginal cost function
as follows:

CI
x (Q, θ|x) =





Cq

(
Q
n
, θ

)
if Q ∈ [0, nx1) ,

Cq

(
Q−Pm

i=1 xi

n−m
, θ

)
if Q ∈ [

∑m−1
i=1 xi + (n−m + 1) xm,∑m

i=1 xi + (n−m) xm+1)

∞ if Q ∈ [
∑n

i=1 xi,∞)

Now we can rewrite maximal social welfare generated in case FBm (given
by (14)) as follows:

W FBm (x, θ) =

∫ nx1

0

[
P (Q, θ)− Cq

(
Q

n
, θ

)]
dQ

+
m−1∑

k=1

∫ Pk
i=1 xi+(n−k)xk+1

Pk−1
i=1 xi+(n−k+1)xk

[
P (Q, θ)− Cq

(
Q−∑k

i=1 xi

n− k
, θ

)]
dQ

+

∫ QFBm

Pm−1
i=1 xi+(n−m+1)xm

[
P (Q, θ)− Cq

(
Q−∑m

i=1 xi

n−m
, θ

)]
dQ
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Now we can compute the derivatives that we need in order to analyze the
first order conditions given by (29). First note that dW FBm

dxi
= 0 whenever

i > m, i. e. firm i is not constrained in case FBm. Thus, for the highets
capacity firm, firm n, we get that only dW FBn

dxi
6= 0, that is

dW FBn

dxn

= P (X, θ)− Cq(xn, θ). (30)

Thus, according to (29) it must hold for the highest capacity firm that

∫ θ

θFBn(x)

[P (X, θ)− Cq(xn, θ)] dF (θ)−Kx(xn) = 0. (31)

Now suppose that one of the inequalities in x≤x2 ≤ · · · ≤ xn is strict, such
that firm 1 has invested strictly less than firm n. It holds that

dWFBm (x, θ)
dx1

=
m−1∑

k=1

∫ Pk
i=1 xi+(n−k)xk+1

Pk−1
i=1 xi+(n−k+1)xk

1
n− k

− Cqq

(
Q−∑k

i=1 xi

n− k
, θ

)
dQ

+
∫ QF Bm

Pm−1
i=1 xi+(n−m+1)xm

1
n−m

Cqq

(
Q−∑m

i=1 xi

n−m
, θ

)
dQ

+
dQFBm

dx1

[
P

(
QFBm, θ

)− Cq

(
qFBm, θ

)]

= Cq(qFBm, θ)− Cq(x1, θ)︸ ︷︷ ︸
>0

+
dQFBm

dx1︸ ︷︷ ︸
>0

[
P

(
QFBm, θ

)− Cq

(
qFBm, θ

)]
︸ ︷︷ ︸

≥0

Now consider the first order condition of firm 1:

dW(x, qFB)
dx1

=
n∑

m=i

∫ θF Bm+1(x)

θF Bm(x)

dWFBm(x, θ)
dx1

dF (θ)−Kx (x1)

>

∫ θ

θF Bn(x)

dWFBn(x, θ)
dx1

dF (θ)−Kx (x1)

=
∫ θ

θF Bn(x)

(
Cq(qFBn, θ)− Cq(x1, θ) +

dQFBn

dx1

[
P

(
QFBn, θ

)− Cq (xn, θ)
])

dF (θ)−Kx (x1)

>

∫ θ

θF Bn(x)

[
P

(
QFBn, θ

)− Cq (xn, θ)
]
dF (θ)−Kx (xn) =

dW(x, qFB)
dxn

≡ 0

Consequently, it cannot be that in the social optimum firm 1 invests less
than firms n.

Part III: Uniqueness We now show that there can be no other symmetric
equilibrium than xFB. If capacities are equal, i. e. x0

1 = x0
2 = · · · = x0

n, we
have

dW(x0, qFB)
dxi

=
∫ θ

θF Bn(x0)

[P (nx0
i , θ)− Cq(x0

i , θ)]dF (θ)−Kx(x0
i ).
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Differentiation yields

d2W(x0, qFB)
(dxi)2

=
∫ θ

θF Bn(x0)

[nPq(nx0
i , θ)− Cqq(x0

i , θ)]dF (θ)

−dθFBn(x0)
dxi

[P (nx0
i , θ

Cn(x0))− Cq(x0
i , θ

Cn(x0))]f(θCn(x0))

−Kxx(x0
i ).

Note that the second term is equal to zero, since x0 is the unconstrained
first best solution at demand realization θCn(x0). Thus, we are left with the
first term, i. e.

d2W(x0, qFB)
(dxi)2

=
∫ θ

θF Bn(x0)

[nPq(nx0
i , θ)− Cqq(x0

i , θ)]dF (θ)−Kxx(x0
i ) < 0

Since dW(xFB ,qFB)
dxi

= 0, it follows that dW(x0,qFB)
dxi

> (<)0 for x0
i < (>)xFB

i .

Thus, no other symmetric optimal solution can exist and XFB is the unique
welfare maximizing investment level.

A.3 Proof of Remark 1

If firms act as price takers at stage two, outputs coincide with the welfare
maximizing quantities characterized in equation (12). Thus, a firm i’s stage
two–profit in scenario θ if firms have invested x and m firms turn out to be
constrained in the welfare optimum is given by

πFBm
i (x, θ) =





P
(
QFBm(x, θ), θ

)
xi − C (xi, θ) if i ≤ m,

P
(
QFBm(x, θ), θ

)
q̃FBm
i (x, θ)− C

(
q̃FBm
i (·) , θ

)
if i > m.

The stage one expected profit of firm i is obtained by integrating over all
profits associated with each demand realization,

πi(x, qFB) =
n∑

m=0

∫ θFBm+1(x)

θFBm(x)

πFBm
i (x, θ)dF (θ)−K (xi) (32)

Analogously to equation (16), the first order condition of firm i’s maximiza-
tion problem is given by24

dπi(x, qFB)

dxi

=
n∑

m=i

∫ θFBm+1(x)

θFBm(x)

[
P (QFBm, θ)− Cq(xi, θ)

]
dF (θ)−Kx (xi) ,

24Note that we assume that firms ignore their impact on X since they behave perfectly
competitive. In this case, concavity of (32) is easy to establish.
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Note that the investment levels cannot be asymmetric by the following argu-
ment: Suppose that firm n invests strictly more than firm 1. The first order
condition of firm 1 is given by

dπ1(x, qFB)

dx1

=
n∑

m=1

∫ θFBm+1(x)

θFBm(x)

[
P (QFBm, θ)− Cq(x1, θ)

]
dF (θ)−Kx (x1)

>

∫ θ

θFBn(x)

[P (X, θ)− Cq(x1, θ)] dF (θ)−Kx (x1)

>

∫ θ

θFBn(x)

[P (X, θ)− Cq(xn, θ)] dF (θ)−Kx (xn) ≡ 0.

Thus, firm 1 would like to increase its investment whenever it is lower than
firm n’s. Consequently, we have a unique solution, which must be the same
for each firm. Let xn = ( 1

n
XN , . . . , 1

n
XN) denote the capacities invested by

the n non–strategic firms. Since all firms face the same first order condition,
we obtain a symmetric solution characterized by

∫ θ

θFBn(xN )

[
P

(
XN , θ

)− Cq

(
1

n
XN , θ

)]
dF (θ) = Kx

(
1

n
XN

)
. (33)

Comparison with condition (17) implies that the investment level if firms do
not behave strategically coincides with the welfare optimal investment level
(as characterized in lemma 2), i. e. XFB = XN .

A.4 Proof of Lemma 3

The structure of the proof is equivalent to the proof of lemma 2. The welfare
function in the case of Cournot competition at stage has exactly the same
structure as welfare if the social optimum is implemented at stage two. As
in the proof of lemma 2, the derivative of the welfare in a scenario Cm can
be pinned down by using industry marginal cost. The only difference is that
in the analysis, the Cournot equilibrium quantities qCm, QCm of the uncon-
strained players have to be substituted for the socially optimal quantities of
the unconstrained players, qFBm, QFBm, that have been used in the analysis
of the welfare optimum. We get

dWCm (x, θ)
dx1

= Cq(qCm, θ)− Cq(x1, θ)︸ ︷︷ ︸
>0

+
dQCm

dx1︸ ︷︷ ︸
>0

[
P

(
QCm, θ

)− Cq

(
qCm, θ

)]
.︸ ︷︷ ︸

>0

Note that in case of Cournot competition at stage two the last term is strictly
positive. The remainder of the proof is equivalent to the proof of lemma 2.
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A.5 Proof of Lemma 4

(i) First note that dπi

dxi
> 0 at X = 0 (by equation (1)), that dπi

dxi
< 0 for some

finite value of X (by assumption 1 part (i)), and that dπi

dxi
is continuous. Thus,

a corner solution is not possible, and we have at least one point where (24)
is satisfied and dπi

dxi
is decreasing. Note, however, that this does not assure

existence. In fact, in the scenario considered here a firm’s stage one profit is
not even quasiconcave, and it is not possible to reformulate the game as a
supermodular game.
(ii) First note that in the case of constant marginal costs it is, independently
of the capacity choices firms made at stage one, always true that either all
firms are constrained at p = Cq(·, θ), or none of them. Thus, it holds that
θFB1(x) = · · · = θFBn(x).

In order to prove the second part of the lemma we apply theorem 2.1 of
Amir and Lambson (2000), p. 239. They show that the standard Cournot
oligopoly game has at least one symmetric equilibrium and no asymmetric
equilibria whenever demand P (·) is continuously differentiable and decreas-
ing, cost C(·) is twice continuously differentiable and nondecreasing and,

moreover, the cross partial derivative dπ(X,q)
dX−idX

> 0, where X denotes total

capacity and X−i capacity chosen by the firms other than i. In order to
see that the results of Amir and Lambson apply to our setup, note that our
game is equivalent to a game where firms choose output given the expected
demand and cost function. Note that if the first best outcome occurs when-
ever capacity is sufficient, it follows that expected inverse demand is given
by

EP (X) =

∫ θFBn(x)

θ

P
(
QFB0 (θ) , θ

)
dF (θ) +

∫ θ

θFBn(x)

P (X, θ) dF (θ) , (34)

and expected cost is given by

EC(xi) =

∫ θFBn(x)

θ

C
(
qFB0
i , θ

)
dF (θ) +

∫ θ

θFBn(x)

C (xi, θ) dF (θ) + K (xi) ,(35)

Note that EP (X) is strictly decreasing in X and EC(xi) is strictly in-
creasing in xi, but they do not satisfy assumption 1, part (iv), which is why
existence and uniqueness are not implied by standard (textbook) analysis.25

25In fact, the expected profit function is not even quasiconcave, as it is easily seen by
inspecting its second derivative. Those observations point to an error in the article of
Reynolds and Wilson (2000). They make almost the same assumptions on demand as we
do, but are more restrictive regarding cost (i. e. Cq(xi) = 0 and K(xi) = kxi). They state
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However, Amir and Lambson’s assumptions26 are satisfied, since the cross
partial derivative

dπ2(X, qC)
dX−idX

= −dθFBn(x)
dX

[−P (X, θFBn(x)) + Cq(X −X−i, θ
FBn(x))

]
︸ ︷︷ ︸

=0 at θF Bn(x)

f(θFBn(x))

+
∫ θ

θF Bn(X)

[−Pq(X, θ) + Cqq(X −X−i, θ)]︸ ︷︷ ︸
>0

f(θ)dθ

is positive. This guarantees that we have at least one symmetric equilibrium
and no asymmetric equilibria in case of constant marginal cost.

B The ”Certainty Equivalent Game”

As already mentioned, our analysis of imperfect competition in section 3
covers a contribution by Gabszewicz and Poddar (1997) who analyzed the
imperfect competition scenario with linear demand and deterministic and
constant marginal cost for a discrete distribution over demand realizations.
In order to relate our results more closely to theirs, in the following we
consider the game to which they compare capacities chosen in the imperfect
competition scenario (lemma 3). In this hypothetical game, which they call
the ”Certainty Equivalent Game”, firms are assumed to choose production
given the expected demand. However, rather than throwing away what they
cannot (or do not want to) sell in low demand scenarios, they have to sell
the quantity they chose at any price (in particular also at negative prices).27

Since the demand function we defined does not allow for negative prices we
define an extended demand function P̂ (Q, θ) that coincides with P (Q, θ) for
all Q ≤ Q(θ) and that may become negative for Q > Q(θ). P̂ is assumend
to satisfy assumption 1, parts (ii) to (vi) for all Q, qi ∈ [0,∞).28

(p.126 of the article) that E[xiP (xi + x−i, θ) − kxi] (in our notation) is strictly concave
and differentiable in xi and therefore has a unique solution. Since E[xiP (xi+x−i, θ)−kxi]
is exactly the profit given by equation (32) for Cq(xi) = 0 and K(xi) = kxi, our analysis
in section 5.2 shows that this is not true.

26The assumptions are: P (·) is continuously differentiable with Pq(·) < 0, C(·) is twice
continuously differentiable and nondecreasing, and Pq(X)− Cqq(xi) < 0.

27This can also be implemented by intervention at stage two, namely if the regulator
prohibits withholding of capacity at any demand scenario. In the formulation of Gab-
szewicz and Poddar demand is linear and becomes negative for capacities higher than
demand at price zero. This corresponds to the assumption of considerable destruction
cost in case of excess capacity, which does not seem plausible in most cases. We discuss
alternative concepts of the certainty equivalent game (where prices are bounded below by
zero) in a companion paper (Grimm and Zoettl (2006)).

28Note that while Gabzewicz and Poddar consider linear demand, in our model the slope
of the demand function may considerably change as prices become negative. This allows
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In our terminology the requirement that capacity is always sold, whatever
the price is, implies that firms are never ”unconstrained”. Thus, in order to
determine the stage one profit we do not need to integrate piecewisely but
we simply get29

πi(x, x) =

∫ θ

θ

[
P̂ (X, θ)xi − C(xi, θ)

]
dF (θ)−K(xi). (36)

Differentiation yields the first order condition as stated in the following30

Property 3 (The Certainty Equivalent Game) The ”Certainty
Equivalent Game” has a unique equilibrium which is symmetric. Equilib-
rium investments xCE

i = 1
n
XCE, i = 1, . . . , n solve

∫ θ

θ

(
P̂

(
XCE , θ

)
+ P̂q

(
XCE , θ

) XCE

n
− Cq

(
XCE

n
, θ

))
dF (θ) = Kx

(
1
n

XCE

)
. (37)

We get that

CE :
∫ θ

θ

[
Pq (X, θ)

1
n

X + P (X, θ)− Cq

(
1
n

X, θ

)]
dF (θ)

ORP : <

∫ θ

θF Bn(x)

[
Pq (X, θ)

1
n

X + P (X, θ)− Cq

(
1
n

X, θ

)]
dF (θ)

which, analogously to the proof of theorem 1 allows us to show that XCE <
XORP .
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