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Abstract
In this paper it is shown that money can matter for macroeco-
nomic stability under interest rate policy, if transactions frictions
are speci�ed in a consistent way. We develop a sticky price model
with a shopping time speci�cation, which induces the marginal
utility of consumption to depend on the (predetermined) stock
of money held at the beginning of the period. Saddle path sta-
bility is then ensured by a passive interest rate policy, whereas
activeness is associated with an explosive equilibrium path unless
the central bank reacts to changes in beginning-of-period real bal-
ances. When the central bank aims at minimizing macroeconomic
distortions, real balances enter the interest rate feedback rule un-
der discretionary optimization. If it is alternatively assumed that
end-of-period money provides transaction services, money can be
neglected for interest rate policy in order to implement the optimal
plan. However, the equilibrium under the targeting rule is likely to
be indetermined, allowing for endogenous �uctuations, which can
be avoided by the central bank implementing the optimal plan
with an interest rate feedback rule featuring beginning-of-period
real balances.
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1 Introduction

Which role should be assigned to monetary aggregates when the short-run nominal interest

rate serves as the central bank�s instrument (operating target)? Recent contributions to

monetary business cycle analysis have brought out a consensus framework, i.e., the New

Keynesian model (see Clarida et al., 1999), in which monetary aggregates hardly play

a substantial role for the evolution of core macroeconomic aggregates, such as output and

in�ation. This has even led to a � now widely applied � strategy to omit money from models,

which are, nonetheless, applicable for short-run monetary policy analysis. As a consequence

thereof, e¢cient interest rate policies are completely independent from the evolution of

monetary aggregates (see, e.g., Woodford, 2003a). In this paper, we identify conditions

within a New Keynesian type framework under which it is desirable that the central bank

considers real balances as an indicator for interest rate policy. Thereby, uniqueness and

stability of the equilibrium path as well as the minimization of a welfare based loss function

serve as the criteria for monetary policy.

The origin of our line of arguments is the presumption that transactions of goods are

associated with costs being alleviated by holdings of non-interest bearing money which

serves as a medium of exchange. As, for example, demonstrated by McCallum (2001), a

consistent application of this concept implies that the equilibrium sequences of output and

in�ation, on the one hand, and real balances, on the other hand, cannot be determined

independently.3 Yet, the quantitative impact of real balances on the evolution of other

macroeconomic aggregates is often found to be very small (see, e.g., Ireland, 2002),4 sug-

gesting the negligence of money � even if �theoretically incorrect� (McCallum, 2001, page

149) � to be a reasonable approximation. In contrast to this view, it is shown in this paper

that a relevant role of money is, in fact, consistent with small real balance e¤ects, i.e., ef-

fects of real money holdings on the propensity to consume, as it originates in the treatment

of money as a stock variable in dynamic general equilibrium models. We will demonstrate

that the predetermined stock of money held by the households at the beginning of the

period is not necessarily irrelevant for the equilibrium behavior of the households and as

an indicator for a stabilizing interest rate policy, if transactions frictions are not neglected.

To reveal the potential relevance of money for interest rate policy, we introduce a con-

ventional shopping time speci�cation, which can equivalently be written by money entering

the utility function in a non-separable way, as, for example, in Den Haan (1990). Households

3Similar arguments can be found in Woodford (2003a, chapter 4.3.2).
4Other studies indicate that money signi�cantly contributes to the prediction of in�ation and consump-

tion, see, e.g., Estrella and Mishkin, (1997), Stock and Watson (1999), Nelson (2003), or Rudebusch and
Svensson (2002) for the US. Similar conclusions can be drawn from recent analyses of Euro area data �nd-
ing that monetary aggregates have a potentially signi�cant role in providing information about current real
output (see Coenen et al., 2002) and contains independent predictive content for in�ation (see Gerlach and
Svensson, 2003).
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are willing to carry over money from one period to the other, even when it is dominated in

rate of return, as they rely on the stock of money held when they enter the goods market

in order to economize on shopping time associated with purchases of consumption goods.

As we assume � for our benchmark speci�cation � that the goods market opens before the

asset market, beginning-of-period money holdings enter the shopping time function and,

thus, the utility function, as in McCallum and Nelson (1999) or Lucas (2000). Given that

real balances a¤ect the marginal utility of consumption, aggregate demand and labor sup-

ply depend on the predetermined value of beginning-of-period money, implying that the

equilibrium sequences of output and in�ation are, in general, history dependent, regardless

whether monetary policy is conducted in a backward or forward looking way. Concisely,

the fundamental solution of any variable, including the nominal interest rate depends on

beginning-of-period (lagged) realizations of real balances, serving as a relevant endogenous

state variable.5

To assess the role of this state variable on the stabilizing properties of interest rate policy,

we, �rstly, derive conditions for saddle path stability when the central bank applies an

interest rate feedback rule solely featuring in�ation and beginning-of-period real balances as

indicators. Thereby, it turns out that the mere reliance of the households� behavior on this

state variable, is responsible for the non-applicability of the so-called Taylor-principle, which

applies for the standard New Keynesian model (see Clarida et al., 1999, or Woodford, 2001).

In particular, it is shown that a passive interest rate rule ensures equilibrium uniqueness

and stability (saddle path stability), while activeness gives rise to explosive equilibrium

sequences.6 If, however, the central bank increases the nominal interest rate with beginning-

of-period real balances, activeness does not necessarily destabilize the economy. While a

simultaneous rise in the nominal and the real interest rate induces households to decrease

the level and the growth rate of real balances, the feedback from real balances alleviates

the rise in the nominal interest rate and, thus, avoids macroeconomic aggregates to evolve

on divergent paths. By considering money as an indicator, the central bank can, therefore,

raise the likelihood for its interest rate setting to be associated with a stable and unique

equilibrium path.

The second part of our monetary policy analysis refers to the case, where the central

bank aims at minimizing a quadratic loss function, which increases with the variances of

output, in�ation, and the nominal interest rate, under discretion, as in Woodford (2003b).7

5Though, the role of money for short-run interest rate policy is examined in several recent contributions,
none of them considers the case where real money is a relevant predetermined state variable (see, for example,
Dotsey and Hornstein, 2003, Ireland, 2003, Nelson, 2003, or Woodford, 2003a).

6Similarly, activeness can lead to explosiveness when physical capital is introduced in a sticky price model
(see Dupor, 2001).

7As shown by Woodford (2003a) for an isomorphic model, such a loss function can be derived from a
second order Taylor expansion of households� welfare.
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While this procedure is known to lead to an entirely forward looking monetary policy regime,

the fundamental solution of the optimal plan exhibits a history dependence induced by the

backward looking behavior of the households. As a consequence, the realizations of the

nominal interest rate under discretionary optimization depend on beginning-of-period real

balances, implying that the latter naturally enters (together with in�ation) an optimal

interest rate feedback rule. These interest rate rules are typically characterized by small

coe¢cients on real balances and saddle path stability.8

In the last part of the paper, we consider a speci�cation of the model with an alternative

timing of markets. In particular, it is assumed that the asset market opens before the goods

market, such that the end-of-period stock of money enters the shopping time function, as

in Brock (1974).9 As a consequence, the households� behavior is independent of beginning-

of-period real balances and the fundamental solution of the model does not exhibit an

endogenous state variable, provided that monetary policy is non-backward looking. In this

case, the Taylor-principle applies, i.e., an interest rate rule featuring in�ation as the only

indicator ensures equilibrium uniqueness if it is active. A simple interest rate rule is further

su¢cient to implement the optimal plan under discretion. If the transactions friction is

neglected, such a rule can lead to equilibrium uniqueness ruling out endogenous �uctuations

(see Clarida et al., 1999). If, however, the central bank cares for the transactions friction,

this type of policy rule fails to implement the optimal plan under discretion in a unique

way. Moreover, the central bank�s aim to minimize the distortion induced by transactions

frictions, which is measured by the variance of the nominal interest rate, can even cause

the equilibrium under the targeting rule to be indetermined.10 In this case, the central

bank can restore uniqueness and, thus, rule out endogenous �uctuations by applying a

backward looking feedback rule, by which the nominal interest rate responds to changes

in beginning-of-period real balances. Thus, money can � even for entirely forward looking

households � play a useful role as an indicator for interest rate policy, if those frictions that

are responsible for a positive demand for money are not neglected.

The remainder of the paper is structured as follows. The model is developed in section 2.

In section 3, we assess the local dynamic implications of interest rate policy for the linearized

version of the benchmark model and derive interest rate feedback rules under discretionary

optimization of a quadratic loss function. In section 4, we conduct corresponding analyses

for the alternative timing of markets. Section 5 concludes.

8The policy rule coe¢cients can even take negative values, which is also found by Schmitt-Grohé and
Uribe (2004) for optimized interest rate rules in a sticky price model with transactions frictions and distor-
tionary taxation.

9See Carlstrom and Fuerst (2001) for a critical discussion of the assumption that the end-of-period stock
of money provides transaction services. For their analysis of determinacy conditions on interest rate rules,
they disregard the relevance of predetermined money.
10 In contrast, the equilibrium of a standard New Keynesian model under the targeting rule, where tran-

scations frictions are absent, can be shown to be uniquely determined (see Jensen, 2002).
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2 A sticky price model with transactions frictions

In this section we present a model where money provides transactions services, modelled

by a shopping time speci�cation. The model can then equivalently be written as a money-

in-the-utility function model where the marginal utility of consumption depends on real

money balances, as, for example, in Den Haan (1990). The equilibrium sequences of all

endogenous variables can, therefore, not be separately determined from the path of real

money balances. Throughout the paper nominal (real) variables are denoted by upper-case

(lower-case) letters. For steady state values, the time index is omitted.

The timing of events can be summarized as follows. At the beginning of period

! households are endowed with holdings of two assets, risk-free government bonds "!¡1
and non-interest bearing money #!¡1, carried over from the previous period. Then an

aggregate (cost push) shock realizes and goods are produced with labor supplied by the

households. After goods are produced, the market for the �nal consumption good opens

where households purchase goods and monopolistically competitive �rms set their prices in a

staggered way. The purchases of goods are assumed to be associated with transaction costs,

i.e., shopping time. The stock of money held before the goods market closes, is assumed

to reduce the required shopping time, such that households are willing to accumulate a

positive amount of money. The central bank, which aims at stabilizing the economy, adjusts

the current nominal interest rate in response to changes in macroeconomic aggregates,

for example, in the current aggregate in�ation rate.11 After the goods market is closed,

households enter the asset market with residual holdings of money.12 There, they receive

the payo¤ on their assets and they adjust their holdings of bonds and money, which are

carried over to the next period. This timing of events implies that the stock of money

held at the beginning of the period provides transaction services, i.e., enters the shopping

time function, as in Den Haan (1990) or Lucas (2000).13 Portfolio adjustments in the asset

market determine the end-of-period stock of money #!, which is held � even when money

is dominated in rate of return by bonds � to reduce transactions costs in the subsequent

period.

There is a continuum of households indexed with $ 2 [0% 1]. Their utility is assumed
to rise with consumption of the �nal good & and of leisure '. The objective of household $

is given by: max(0
1P
!=0
)!*(&"!% '"!), where ) 2 (0% 1) denotes the discount factor and (0 the

expectation operator conditional on the information in period 0. The instantaneous utility

11We abstain from specifying interest rate policy in a forward-looking way, which is shown by Bernanke and
Woodford (1997) and Carlstrom and Fuerst (2001) to be a potential source for macroeconomic instabilities
induced by endogenous �uctuations.
12 In section 4, the timing of markets is reversed.
13A corresponding speci�cation, where the beginning-of-period stock of money enters the utility function

can, for example, be found in Woodford (1990) or McCallum and Nelson (1999).

4



function * exhibits constant intertemporal elasticities of substitution:

*(&"!% '"!) = (1¡ +)¡1 &1¡#"! + (1¡ ,)¡1'1¡$"! % + ¸ 1 and , ¸ 0- (1)

Purchases of consumption goods require transaction services. These services are produced

with money holdings and with shopping time, which can also be rationalized by a Baumol-

Tobin inventory theoretic approach to money demand.14 Total time endowment, which

consists of leisure, working time, and shopping time, is normalized to equal one: '! =

1¡ .!¡ /!, where / denotes shopping time and . working time. The shopping time function
satis�es the following standard properties (see, e.g., Ljungqvist and Sargent, 2000):

/"! = 0 (&"!% 1"!23!) % (2)

where 0 : 42+ ! [0% 1], 0% 5 0% 0%% 5 0% 0& 6 0, 0&& 5 0 and 0%& · 0. While the

shopping time is increasing in consumption, it is decreasing in real money balances 1!23!,

where 1! denotes the relevant stock of money holdings that reduces transaction costs and

3! the aggregate price level in period !. Replacing leisure in (1) by '! = 1¡ .!¡0!, we can
rewrite the utility function as 7(&"!% ."!% 8"!) = *(&"!% 1¡ ."!¡0(&"!% 8"!)), where 8! ´ 1!23!.

Given that the goods market opens before the asset market, the stock of nominal bal-

ances held at the beginning of the period ! reduces the shopping time associated with con-

sumption expenditures in period ! : 1! =#!¡1 ) 8! = 9!¡12:!, where 9!¡1 ´#!¡123!¡1
denotes beginning-of-period real balances. In section 4 of this paper, we alternatively as-

sume that the goods market opens after the asset market, implying that the end-of-period

stock of money enters the shopping time function (1! =#!). To simplify the derivation of

analytical results, it is further assumed that utility is linear in leisure, , = 0, which is also

assumed for determinacy analyses under interest rate policy in Dupor (2001) and Carlstrom

and Fuerst (2003). This assumption further facilitates comparisons with studies on optimal

monetary policy (see Clarida et al., 1999, or Woodford, 2003a), where utility is commonly

assumed to be separable in working time (7%' = 7&' = 0). The households� objective can

therefore be written as:

max(0

1X
!=0

)! [7 (&"!% ."!%9"!¡12:!)] % (3)

where 7
µ
&"!% ."!%

9"!¡1
:!

¶
=

"
&1¡#"!

1¡ + ¡0
µ
&"!%

9"!¡1
:!

¶#
+ (1¡ ."!) %

and :! ´ 3!23!¡1 denotes the gross rate of in�ation. The remaining properties of 7(&!% .!% 8"!) =
7 (&"!% ."!%9"!¡12:!) can be summarized as follows: 7% = *% ¡ 0%, 7& = ¡0& 5 0, 7%% =

14Precisely, an equivalence between these two speci�cations requires a unit income elasticity of money
demand, which will be assumed in the following sections for demonstrative purposes.
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*%% ¡0%% 6 0, 7&& = ¡0&& 6 0, and 7%& = ¡0%& ¸ 0. In this paper, we are predominantly
interested in the role of money for interest rate policy for the case, where the shopping time

function and, thus, the utility function are non-separable between consumption and real

balances. As an parametric example, we will apply Lucas�s (2000) shopping time speci�-

cation in the subsequent sections of the paper, which exhibits a unit consumption/income

elasticity of money demand, implying 0%& 6 0. In this case, there is a real balance e¤ect,

causing marginal utility of consumption to increase with real balances (7%& 5 0), which

can also be rationalized by considering real resource costs of transactions (see Feenstra,

1996, or McCallum, 2001). Specifying real money balances and consumption as comple-

ments can, thus, be viewed as �the most plausible assumption� (Woodford, 2003a, page

112),15 while �theoretical considerations suggest� a separable utility function to be actually

�misspeci�ed� (McCallum, 2001, page 157).

We assume that households monopolistically supply di¤erentiated labor services as in

Clarida et al. (2002). The di¤erentiated labor services ." are transformed into a composite

labor input ., which can be employed for the production of the �nal good. The transfor-

mation is conducted via the aggregator: .1¡1()!! =
R 1
0 .

1¡1()!
"! ;$, with <! 5 1. The elasticity

of substitution between di¤erentiated labor services <! is allowed to vary exogenously over

time,16 leading to changes in the labor market conditions which a¤ect the costs of goods

producing �rms. Cost minimization with respect to di¤erentiated labor services then leads

to following demand for ." :

."! =

µ
="!
=!

¶¡)!
.!% with =

1¡)!
! =

Z 1

0
=
1¡)!
"! ;$- (4)

As households are identical, the indexation of households� variables is subsequently omitted

except for their idiosyncratic working time ." and the real wage rate =" . The households

own �nal goods producing �rms and, thus, receive their pro�ts >!. They have access to risk

free one period bonds ", which serve as a store of value dominating money in rate of return

by the nominal interest rate 4 ´ 1+ ? 5 1. Households further receive wage payments and
a government transfer @ . The budget constraint of household $ is given by

3!&! +"! +#! · 4!"!¡1 +#!¡1 + 3!="!."! + 3!@ ! + 3!>!- (5)

Maximizing (3) subject to the budget constraint (5), labor demand (4) and a no-Ponzi-game

condition, lim*!1(![("!+* +#!+*)¦
*
+=14!++

¡1] ¸ 0, for given initial values "¡1 and#¡1
leads to the following �rst order conditions for consumption, money, leisure, and bonds,

15Woodford (2003a) further argues that �if utility is obtained from holding money, this must be because
of money balances facilitate transactions, and it is hardly sensible that the bene�ts of such balances should
be independent of the real volume of transactions that a household actually undertakes.� (op. cit., p. 300).
16A decline in !! leads, for example, to an exogenous increase in labor market competitiveness.
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given that 8! = 9!¡12:! :

A! = &
¡#
! ¡0% (&!%9!¡12:!) % (6)

(!
A!+1(4!+1 ¡ 1)

:!+1
= (!

¡0& (&!+1%9!2:!+1)
:!+1

% (7)

B! = ="!A!% (8)

A! = )(!
A!+14!+1
:!+1

% (9)

where B! ´ )!
)!¡1 denotes the variable markup over the perfectly competitive real wage

governed by a stationary stochastic process and A the shadow price of wealth. Furthermore,

the budget constraint (5) holds with equality and the transversality condition must be

satis�ed, lim*!1(!
£
A!+*)

!+* (C!+* +9!+*)
¤
= 0, where C! ´ "!23!. It should be noted that

consumption depends on beginning-of-period real balances, according to (6). In contrast,

if the end-of-period stock of money is � as in the section 4 � assumed to enter the shopping

time function (1! = #!), consumption will not depend on a predetermined value of real

balances, since the �rst order condition that corresponds to (6) then features 9! instead of

9!¡12:!.

The �nal consumption good is produced by competitive �rms, which aggregate di¤er-

entiated goods produced by monopolistically competitive �rms indexed with ? 2 [0% 1]. The
aggregation technology is given by

D
1¡1(,
! =

Z 1

0
D
1¡1(,
*! ;?% with E 5 1% (10)

where D is the number of units of the �nal good, D* the amount produced by �rm ?, and E the

constant elasticity of substitution between these di¤erentiated goods. Let 3* and 3 denote

the price of good ? set by �rm ? and the price index for the �nal good. The demand for

each di¤erentiated good is derived by minimizing the total costs of D : D*! = (3*!23!)
¡, D!,

with 3 1¡,! =
R 1
0 3

1¡,
*! ;?. Firm ? produces good D* with a technology which is linear in the

composite labor input: D*! = .*!. We introduce a nominal stickiness in form of staggered

price setting as developed by Calvo (1983). Each period �rms may reset their prices with the

probability 1¡ F independent of the time elapsed since the last price setting. The fraction
F of �rms are assumed to adjust their previous period�s prices according to 3*! = :3*!¡1%

where : denotes the average in�ation rate. The linear approximation to the corresponding

aggregate supply constraint at the steady state, is given by

b:! = Gc9&! + )(!b:!+1% with G ´ (1¡ F) (1¡ )F)F¡1 5 0% (11)

where b' denotes the percent deviation from the steady state value ' of a generic variable

'!, b' = log('!)¡ log('), and 9& real marginal costs of di¤erentiated goods producing �rms.
7



The demand for aggregate labor input in a symmetric equilibrium relates real marginal

costs to the real wage rate:

9&! = =!- (12)

The public sector consists of a monetary and a �scal authority. The latter is assumed

to issue one-period bonds, earning the net interest (4! ¡ 1)"!¡1, while the former issues
money. The consolidated �ow budget constraint of the public sector is given by "! +

#! = 4!"!¡1 +#!¡1 + 3!@ !. Public policy is assumed to ensure government solvency:

lim*!1("!+* +#!+*)(!+*¦
*
+=1 (4!++)

¡1 = 0. The monetary authority is assumed to set a

sequence of nominal interest rates f4!g1!=0. Thereby, we restrict the sequence of interest
rates to satisfy 4! 5 1 8! and to be consistent with the steady state condition 4 = :2).

The rational expectations equilibrium of the model is a set of sequences f:!% =!%
9!% A!% 4!% &!% .!% 9&!g1!=0 satisfying (i) the household�s �rst order conditions (6)-(7) and (8)-
(9), (ii) optimal price setting approximated by (11) and the aggregate labor demand (12);

(iii), the aggregate resource constraint, .! = &!, a sequence for fB!g1!=0 and for the monetary
policy instrument f4!g1!=0, and the transversality condition for given initial values#¡1 and

3¡1.

3 Interest rate policy in the benchmark model

In this section, we aim at disclosing the role of money as an indicator for monetary policy

and for local determinacy and stabilization of macroeconomic aggregates under interest

rate feedback rules. The analysis is conducted for the log-linear approximation of the

model at the steady state. The �rst part of this section presents the rational expectations

equilibrium of the linearized version of the model and introduces a parametric example

for the shopping time function, which is taken from Lucas (2000). The subsequent part

examines the local dynamic properties of the model under simple interest rate feedback

rules, featuring in�ation and real money balances as indicators. In the last part of this

section we examine interest rate policy under discretionary optimization of a quadratic loss

function and describe implied feedback rules for the nominal interest rate.

3.1 The linearized model

The benchmark model where beginning-of-period real balances enter the shopping time

function is log-linearized at the steady state, which is characterized by the following conditions:

: = 4), 7'(&) = 7%(&%92:) (E¡ 1) 2(BE), and 7%(&%92:) (4¡ 1) = 7&(&%92:), and a con-
sistent interest rate policy. The rational expectations equilibrium of the linearized and

reduced model can then be de�ned as follows.

De�nition 1 A rational expectations equilibrium of the log-linear approximation to the

8



model with 1! =#! at the steady state is a set of sequences {b&!% b9!, b:!}1!=0 satisfying
b:! = G+%b&! ¡ GH%& b9!¡1 + GH%&b:! +(!)b:!+1 + GbB!% (13)

+%b&! ¡ H%& b9!¡1 + H%&b:! = +%(!b&!+1 ¡ H%& b9! + (H%& + 1)(!b:!+1 ¡(! b4!+1% (14)

(H%& + +&) b9! = ¡I(! b4!+1 + (+% + F&%)(!b&!+1 + (H%& + +&)(!b:!+1% (15)

where I ´ -
-¡1 , H%& ´ &."#

."
% +% ´ ¡ %.""

."
% +& ´ ¡&.##.#

% and F&% ´ %.#"
.#
% and the transversality

condition, given a sequence of {bB!}1!=0 satisfying bB! = JbB!¡1 + H/!, where H/! is i.i.d. with
(!¡1H/! = 0, a policy { b4!}1!=0 with 4! 5 18!, and an initial value 9¡1 =#¡123¡! 5 0.

The equilibrium conditions (13)-(15) reveal that beginning-of-period real balances, b9!¡1,
are for 0%& 6 0 ) H%& 5 0 non-negligible for the determination of in�ation, consumption,

and end-of-period real balances, b9!. The predetermined value for real balances imposes,
by (6), a restriction on current consumption and, therefore, on the remaining variables.

It should further be noted that the coe¢cients on real balances and on consumption in

the aggregate supply constraint (13) exhibit opposite signs.17 Consumption tends to raise

real marginal costs and, thus, current in�ation, whereas real balances tend to reduce real

marginal costs. This e¤ect stems from the fact that consumption and real balances are

Edgeworth complements, implying that the marginal utility of consumption rises with real

money holdings. In this case, households, who aim at equalizing the ratio of the marginal

utilities of consumption and of leisure to the ratio of their prices, are willing to reduce leisure

for a given real wage. Equivalently, real marginal costs of �rms decline in this case, as the

real wage demanded by households declines for a given labor supply. A higher value for

beginning-of-period real balances is, thus, associated with lower current in�ation, whereas

a rise in nominal money growth is consistent with higher current in�ation given that real

balances in (13) are predetermined.

Throughout the remainder of the paper, we aim at deriving characteristics of stabilizing

feedback rules for the nominal interest rate in an environment where transactions frictions,

which are responsible for a positive demand for money, are non-negligible. The speci�cation

of the model given in de�nition 1 is, however, not always suited for the presentation of the

results. Therefor and to provide numerical examples, we introduce the following parametric

form for the shopping time function 0, which is taken from Lucas (2000):

/! = 0

µ
3!&!
1!

¶
= K

&!
8!
, (16)

) H%& = (4¡ 1)82&% +% = + (H%& + 1) % +& = 2% and F&% = 1-

17 Similarly, the growth rate of consumption increases and the growth rate of real balances decreases with
the real interest rate (see 14), as the shadow price of wealth declines (rises), by (6), with consumption (real
balances).
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The shopping time speci�cation (16) is associated with a unit elasticity of money demand

with respect to consumption/income and an interest elasticity of money demand equal

of 0.5, which is also found in empirical studies (see Lucas, 2000). It further corresponds

to the Baumol-Tobin inventory-theoretic approach to money demand.18 According to the

latter, which encompasses Clower�s (1967) cash-in-advance constraint as a limiting case, the

parameter K can be interpreted as the time costs per trip to the bank, while the number

of these trips equals &!28!. Thus, for 1! = #!¡1 the marginal utility of consumption rises

with real money balances held at the beginning of the period, by 0."
01!¡1 = K9¡2!¡1:! 5 0.

The speci�cation (16) further implies that the steady state elasticity of the marginal utility

of consumption with respect to real balances H%& is strictly positive and relatively small for

reasonable values for the net interest rate (4¡ 1).19

3.2 Real balances and local stability

Before we turn to the analysis of the local dynamics for the benchmark model, we brie�y

consider an alternative version of the model, which corresponds to speci�cations that can

often be found in recent contributions to the literature on monetary (interest rate) policy

analysis. Suppose that the shopping time function is separable, 0%& = 0, such that H%& =

F&% = 0. Then the model in de�nition 1 reduces to a standard New Keynesian model,

containing the so-called New Keynesian Phillips curve, b:! = G+b&! + )(!b:!+1 + GB!, and a
forward looking aggregate demand constraint +b&! = +b&!+1 ¡ (! b4!+1 + (!b:!+1. Applying a
simple Taylor-type interest rate rule, b4! = J2b:!, the model is known to exhibit a unique
rational expectations equilibrium path converging to the steady state if and only if J2 2
(1%fJ2),20 where fJ2 ´ 1 + 2(1 + ))G¡1 takes extremely large values for reasonable price

rigidities. Turning to the general version of the model presented in de�nition 1, we want to

examine if activeness is still necessary for a saddle path con�guration if consumption and,

thus, in�ation depends on the predetermined value of real balances, 0%& 5 0, 7%& 5 0. To

reveal the role of the latter for local stability, we allow the interest rate to be set contingent

on realizations of the state variable, b9!¡1 :
b4! = J2b:! + J1 b9!¡1, J2% J1 ¸ 0- (17)

The rule (17) is su¢ciently general for the purpose of this paper, as it provides a generic

form for an interest rate feedback rule under discretionary optimization, which will be

derived in the following subsection. Applying (17) and eliminating consumption, the model

given in de�nition 1 can be reduced to the following 2 £ 2 system in in�ation and real

18A recent application of the inventory-theoretic approach can be found in Alvarez et al. (2003) for the
analysis of the short-run behavior of money, velocity, and prices.
19Thus, the intertemporal substitution elasticity of consumption "" approximately equals " (see 1).
20The proof for an isomorphic model can be found in Carlstrom and Fuerst (2001, section 5) or Woodford

(2003a, proposition 4.5).
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balances:

F2b:! = F1 b9!¡1 + )(!b:!+1 + GbB!% (18)

(F3 ¡ J1) b9! ¡ F5(!b:!+1 = F3 b9!¡1 ¡ F4b:!% (19)

where F1 ´ G(+% 3"#+###"+4#"
¡ H%&)+G #"

#"+4#"
IJ1% F2 ´ 1+F1¡G #"

#"+4#"
I(J1+ J2)% F3 ´ F12G%

F4 ´ F3 ¡ #"
#"+4#"

I(J1 + J2)% and F5 ´ F4 ¡ (1 ¡ J2). As revealed by the two conditions
(18) and (19), the model exhibits exactly one predetermined variable, b9!¡1, implying that
a stable and unique equilibrium path (saddle path stability) requires one stable and one

unstable eigenvalue. Given that the model can be shown to exhibit at least one unstable

eigenvalue, equilibrium indeterminacy cannot occur. Hence, interest rate policy faces the

problem of avoiding the equilibrium path to become divergent (explosive) rather than to

rule out self-ful�lling expectations. The conditions for saddle path stability are presented

in the following proposition for a shopping time function satisfying (16).21

Proposition 1 Suppose that the central bank sets the nominal interest rate according to
(17) and that : 2 [1% 2)). Then the equilibrium path of the model satisfying (16) is saddle
path stable if and only if

?-) J2 6 1 + J1¢1, or

??-) J2 5fJ2 + J1¢2%
where ¢1 ´ 5((6¡2)#"+3#")¡(1¡7)(1+#")

5(2#"¡3#") and ¢2 ´ (1+7)((26¡1)#"¡1)+5((6¡2)#"+3#")
5(2#"¡3#") 5 ¢1, and

is for ?- non-oscillatory and for ??- oscillatory. Otherwise, J2 2 (1 + J1¢1, fJ2 + J1¢2),
the equilibrium path is explosive.

Proof. See appendix 6.1.

The result presented in proposition 1 reveals that passiveness, J2 6 1, ensures saddle

path stability when the central bank does not react to changes in beginning-of-period

real balances, J1 = 0. Hence for a simple interest rate policy satisfying b4! = J2b:! the
Taylor-principle does not apply, as activeness, J2 5 1, which is necessary for a standard

New Keynesian model (0%& = 0), destabilizes the economy in our benchmark model with

0%& 6 0. This �nding, which relates to Dupor�s (2001) result for a sticky price model with

physical capital, reveals that the existence of a relevant state variable is able to revert the

stability condition under interest rate policy. Correspondingly, the threshold fJ2 serves for
the separable case as an upper bound for an in�ation elasticity that ensures determinacy,

whereas it provides a lower bound for the in�ation elasticity in the benchmark case if J1 = 0

(see part ??- of proposition 1). In what follows, we focus on the case where the equilibrium

path is non-oscillatory, which refers to part ?- of proposition 1.

21Note that the proof refers to the case where disin�ation and extremely high steady state in�ation rates
are disregarded, # 2 [1$ 2%), for convenience.
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To get an intuition for the result, consider �rst the standard case, where money enters

the utility function in a separable way (0%& = 0). In this case, activeness is necessary for

determinacy. When in�ation is expected to rise, interest rate policy has to raise the nominal

and the real interest rate to rule out expectations to become self-ful�lling. Otherwise, when

the nominal interest rate is raised by less than one for one with in�ation, the real interest

rate declines, inducing households to save less and to raise current consumption, while the

negative consumption growth rate implies a subsequent return to the steady state. The rise

in aggregate demand raises the required labor input and, thus, real marginal costs, such

that in�ation indeed rises and the initial change in expectations is self-ful�lling.

Now suppose that the end-of-period stock of money enters a shopping time function

with 0%& 6 0. In this case the aggregate demand constraint relates the growth rate of

the predetermined variable, b9!¡1 ¡ b9!, to the real interest rate (see 14). In contrast to
the growth rate of consumption, the growth rate of real balances is negatively related to

the latter, as the shadow price of wealth increases (decreases), by (6), with real balances

(consumption). Further, a higher nominal interest rate reduces the level of real balances

held by the households (see 15). Hence, an active interest rate policy, which leads � for

higher in�ation � to a rise in the nominal and the real interest rate, causes a decline in the

level and in the growth rate of real balances. The associated decline in the marginal utility

of consumption then induces households to substitute consumption in favor of leisure, such

that labor becomes more costly. According to (13), the decline in real balances tends �rms

to raise their prices, such that the initial rise in in�ation is reinforced. This, however,

induces a further rise in the interest rates implying that the equilibrium path does not

converge back to the steady state.

In order to avoid the economy to evolve on an explosive path, the central bank should

either apply a passive interest rate policy, or it should raise the nominal interest rate with

beginning-of-period real balances, when ¢1 5 0 (see part ?- in proposition 1). In the former

case, a rise in in�ation leads to a rise in the nominal interest rate, which is � ceteris paribus

� associated with a smaller level of real balances. The real interest rate, however, declines

such that real balances grow, by (14), implying a convergence back to the steady state.

Similarly, a central bank can stabilize the economy even for J2 5 1 by reacting positively

to real balances, J1 5 0. In this case, the decline in the level and in the growth rate of real

balances, calls the central bank to raise the nominal interest rate by, de facto, less than one

for one with in�ation. Concisely, if the central bank accounts for real balances when it sets

its instrument, then the adjustment of the interest rates is less pronounced and avoids the

history dependent evolution of real balances to become explosive.

For a positive feedback from beginning-of-period real balances to be actually stabi-

lizing, the composite parameter ¢1 has to be strictly positive. This condition is, how-

ever, hardly restrictive and is guaranteed if prices are not extremely rigid G 5 eG, where
12



eG ´ (1¡ )) 1+#"
(6¡2)#"+3#" . Given that LeG2LH%& 6 0, the lower bound eG cannot exceedeG3"#=0 = (1¡ )) 1+#

(6¡2)# . Hence, the condition for G presented in the following corollary

is su¢cient to ensure that ¢1 5 0 and that J1 5 0 raises the likelihood for (moderate)

in�ation elasticities (see part ?- in proposition 1) to be associated with saddle path stability.

Corollary 1 If G 5 (1¡ )) 1+#
(6¡2)# , then there exists for each interest rate rule with J2 5 1

one fJ1 5 0 such that any interest rate rule with J1 5 fJ1 ensures the equilibrium path of
the model with (16) to be saddle path stable.

Values for the fraction F of non-optimizing price setters that are consistent with the es-

timates in Clarida and Gertler (1999), are clearly su¢cient to satisfy the condition given

in corollary 1 for reasonable values for the remaining parameters. For example, the pa-

rameter values ) = 0-9926, H%& = 0-01682, +% = 2, : = 1, and F = 0-8, which will be

introduced in detail in the subsequent section, imply G = 0-0515, that is apparently larger

than eG = 8-34 £ 10¡5.22 The coe¢cient ¢1 in part ?- of proposition 1 then equals 66-75,
implying that an interest rate rule with J2 = 1-5 (2) is associated with a saddle stable

equilibrium path if the coe¢cient on money satis�es J1 5 0-0075 (0-015). Hence, even very

small responses of the interest rate to changes in real balances help to avoid instabilities,

which arise for high in�ation elasticities.

3.3 Interest rate policy under discretionary optimization

In this section we extend the analysis of interest rate policy to the case where the central

bank sets the nominal interest rate in accordance with its aim to stabilize the economy. To

allow for the derivation of analytical results and to facilitate comparisons to related studies,

we apply a quadratic loss function as the objective of the central bank. As shown by Wood-

ford (2003a), a loss function featuring variances of in�ation and output can be obtained

from a second-order Taylor expansion of the households� welfare function at a frictionless

steady state, given that utility rises with consumption and leisure, as in (1), and that prices

are not completely �exible, as implied by (11). However, for a loss function to exclusively

depend on the quadratic deviations of in�ation and output from their steady state values,

there should be no further friction besides the one brought about by the nominal rigidity.

Nonetheless, such a loss function can still be viewed as a suitable approximation for cases

where additional frictions are su¢ciently small.

In our framework there, in fact, exists an additional friction that stems from transactions

of consumption goods, i.e., the shopping time assumption, which is obviously not negligible

if 0%& 6 0. As shown by Woodford (2003a, proposition 6.8) for an isomorphic money-in-

the-utility function speci�cation, the loss function then additionally features the variance

22For the upper bound !& to become binding, the fraction ' has, in fact, to be larger than 0.992.
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of the nominal interest rate as an argument:23

¡(0 1
2

1X
!=0

)!M!, where M! = :̂2! + Nb&2! + O b42! % N 5 0, O ¸ 0% (20)

The loss function (20) thus implies that optimal monetary policy should not only minimize

the variances of in�ation and consumption (output), but also the variance of the nominal

interest rate. This is due to the presence of the transactions friction, which implies that

changes in the interest rate, i.e., the opportunity costs of money, cause a distortion on op-

timal asset holdings. Hence, in order to minimize this distortion, that adds to the nominal

rigidity brought about by the staggered price setting, the central bank should aim at mini-

mizing �uctuations in the nominal interest rate. As the model features two (non-negligible)

distortions, monetary policy faces the trade-o¤ between adjusting the nominal interest rate

in a way that minimizes the distortion due to the price rigidity and to choose a smooth

path for its instrument to account for the transactions friction induced by the shopping time

assumption. The optimal adjustment of the nominal interest rate, thus, crucially relies on

the weights in the loss function.

In order to reveal the role of money for a stabilizing interest rate policy, we aim at

deriving a feedback rule for the nominal interest rate that implements the optimal plan, i.e.,

the equilibrium under the targeting rule. Thereby, we presume that the central bank seeks

to maximize (20) on a day-to-day basis, i.e., under discretion, as for example in Woodford

(2003b). We abstain from analyzing optimal monetary policy under commitment, as this

induces a history dependence of monetary policy and, thus, of the optimal plan (see, e.g.,

Clarida et al., 1999), which might be a potential source for the equilibrium sequences to

depend on the lagged realizations of endogenous variables, e.g., real balances. Instead, we

focus on a discretionary optimization which is known to lead to a forward looking (Markov)

equilibrium in the standard New Keynesian model. In contrast, the interest rate sequence

under discretionary optimization is not independent of the history of real balances in the

model presented in de�nition 1. The central bank considers � even under discretion � that

consumption and, thus, in�ation depend on the beginning-of-period stock of money when

it maximizes (20). Hence, an optimal monetary policy under discretion does not ignore

its impact on the endogenous state in the subsequent period. Concisely, the central bank�s

optimality condition for the trade-o¤ between its targets, i.e., the so-called �targeting rule�,

is forward looking, while the solution for its instrument that implements the optimal plan

under discretion evolves in a history dependent way. This result, which holds for any

shopping time function satisfying (2) with 0%& 6 0, is derived in appendix 6.2 and is

23The nominal interest rate enters the loss function, as real balances are eliminated in the second-oder
Talyor expansion of households utility, (()!$ *!$ +!), with the money demand function (15), which can be
rewritten as "+! = $!"+%"

&"!+%!
")! ¡ 1'(1¡()

&"!+%!
",!.
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summarized in the following proposition.

Proposition 2 Consider that the central bank maximizes (20) s.t. (13)-(15). If 0%& 6 0,
then the equilibrium path under discretionary optimization is characterized by a sequence
for nominal interest rates that is, in general, not independent of the beginning-of-the-period
real balances, L b4!2L b9!¡1 6= 0 8!.
To provide examples for interest rate feedback rules under discretionary optimization, we

apply the shopping time function (16) and numerical values for the structural parameters.

The elasticities +& and F&% of the utility function are already determined by the shopping

time speci�cation, +& = 2 and F&% = 1 (see 16). For the intertemporal elasticity of sub-

stitution of consumption we apply the same value as for the intertemporal elasticity of

substitution of money: +% = 2. The fraction of �rms that adjust their prices in an optimal

way is set equal to 0.2, which implies F = 0-8 in accordance with the estimates in Galí

and Gertler (1999). The elasticity of substitution between the di¤erentiated goods E is set

equal to 6 and the steady state in�ation rate is set equal to 1 (see Woodford, 2003a).24 The

discount factor ) and the steady state velocity, P = D29, are set to match an average real

interest rate of 1-03¡0825 and the velocity of #2 reported for the US in Christiano et al.

(2003): ) = 0-9926 and P = 0-44. These values, together with the steady state condition

4 = :2), imply the steady state elasticity of the marginal utility of consumption with

respect to real balances H%& to equal 1-68 £ 10¡2. Further, we assume that the stochastic
process for the cost push shock satis�es J = 0-9 (see, e.g., Clarida et al. 1999).

The last part of the calibration regards the weights in the loss function, N and O.

Following proposition 6.8 in Woodford (2003a), the weights, N and O, can be identi�ed

with

N¤ = G
E¡ 1
E

µ
+% ¡ H%&+% + F&%

H%& + +&

¶
and O¤ = G

E¡ 1
E

1

1¡ )
12P

H%& + +&
- (21)

According to (21), the weight on the variance of the nominal interest rate, O¤ = 6-53, is

more than six times higher than the weight on the in�ation variance and 77 times higher

than the weight on the consumption variance, N¤ = 0-085. This relatively large value for

O¤ is, however, not due to the real balances e¤ect summarized by the elasticity H%& that

exhibits a reasonably small value (H%& = 0-0168), su¢cing the upper bound (0.02) suggested

by Woodford (2003a). It, actually, stems from the model�s property that the demand for

money, which is applied to eliminate money from the utility function, depends on the net

nominal interest rate. Hence, the respective coe¢cient on the gross nominal interest rate

has to be premultiplied by I = (1¡ ))¡1. It should further be noted that the weight O¤ is
strictly larger than zero, even if there are no real balance e¤ects, 0%& = 0, as the existence

24A constant steady state price level is required to minimize the steady state distortion brought about by
the price rigidity. Similarly, it is assumed that the �scal authority eliminates the average distortions due to
monopolistic competition in the labor and in the goods market by a transfer system, which is not explicitly
modelled (see, e.g., Clarida et al., 2002).
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of transactions frictions does not rely on the non-separability of the utility function (see

Woodford, 2003a). To reveal the impact of the weight O on interest rate policy, we apply

some arti�cial values (0% 0-5% 1) and O¤, holding the remaining parameter values, including

N = N¤, constant. The feedback rules for the interest rate are derived by eliminating the

shock in the fundamental (minimum state variable) solution for the nominal interest rate

under discretionary optimization, by applying the fundamental solution for the in�ation

rate (see appendix 6.2). The coe¢cients of the interest rate feedback rule, which then takes

the form b4! = J2b:! + J1 b9!¡1, are presented in table 1.25
Table 1 Policy rule coe¢cients under discretionary optimization

O = 0 O = 0-5 O = 1 O = O¤

In�ation elasticity J2 0-068 0-12 0-73 ¡0-014
Money elasticity J1 0-00081 0-0015 0-0093 ¡0-00016
Note: The weight N is set equal to 0.085 and O¤ equals 6.53.

The feedback rules for O = 0% 0-5% and 1 in table 1 satisfy condition ?- in proposition 1 and

are, thus, associated with a stable and unique equilibrium path. The one in the last column,

also leads to a saddle path stable equilibrium, even though the policy rule coe¢cients J2 and

J1 are negative.
26 The values reported in table 1 further reveal some remarkable properties

of interest rate policy under discretionary optimization. As summarized in proposition 2,

the money elasticity of the nominal interest rate J1 is not equal to zero. In the case where

the weight in the loss function on the interest rate variance equals zero (O = 0), both policy

rule elasticities take very small values. Hence, even if we assume that there is no policy

trade-o¤ between the stabilization of in�ation (and output) and the nominal interest rate,

the response of the latter to changes in in�ation is far from values, for example, suggested

by the Taylor-principle. The reason for this result is that a rise in the nominal interest rate,

which would reduce consumption and in�ation for 7%1 = 0, induces a decline in future real

balances that raises households� demand for leisure and lowers their labor supply. Hence,

the rise in the nominal interest rate tends to increase future real marginal costs and, by

(13), future in�ation, such that forward looking price setters are � ceteris paribus � willing

to raise their prices.27 If the nominal interest rate is lowered in response to the decline in

real balances (J1 5 0), the latter e¤ect on future prices is mitigated.

Raising the weight of the interest rate variance O, further discloses that the policy rule

25Applying Woodford�s (2003b) value for the coe¢cient - on the interest rate variance in the loss function
(- = 0.236) leads to values for the policy rule elasticities equal to /) = 0.087 and /* = 0.001.
26 It should be noted that the stable eigenvalue is positive for all feedback rules given in table 1, indicating

that the equilibrium paths are non-oscillatory.
27This e¤ect can easily be seen from the aggregate supply constraint (13), when real balances are eliminated

with the money demand condition (15): "#! = &%"%!¡&"!$!"&"!+%!
")! + & &"!+

&"!+%!
",! + 0!%"#!+1 + &"1!.
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elasticities change in a non-monotonic way. For moderate values for O, these elasticities take

higher values than for O = 0. In these cases the central bank �ghts the cost push induced

rise in in�ation by a more pronounced rise in the nominal interest rate, and responds to

the future decline in real marginal costs more aggressively, reducing the deviation of real

balances from its steady state value. Raising the weight to the value O¤, the responses to

changes in in�ation and in real balances again decrease and even take (very) small negative

values,28 as the central bank is now severely aware of minimizing the transactions distortion.

In this case, a cost push shock, which raises the current in�ation rate, induces the central

bank to lower the nominal interest rate, which leads � ceteris paribus � to an increase in

future real balances. The implied cost alleviating e¤ect on future in�ation counteracts the

impact of the (autocorrelated) cost push shocks, such that strong future adjustments of the

nominal interest rate are avoided.

4 An alternative timing of markets

In this section we consider an alternative version of the model which di¤ers from the bench-

mark speci�cation with regard to the timing of markets. In particular, we assume that the

asset market opens before the goods market. Accordingly, households can adjust their

holdings of money and bonds before they enter the goods market. Hence, the end-of-period

stock of money enters the shopping time function, 1! = #! ) 0(&!%#!23!), as for ex-

ample, in Brock (1974) or in Ljungqvist and Sargent (2000). It should be noted that this

speci�cation entails an inconsistency if the shopping time assumption is interpreted as a

generalization of a cash-in-advance approach. Assuming the end-of-period stock of money

to enter the shopping time function, rather accords to a �cash-when-I�m-done� concept (see

Carlstrom and Fuerst, 2001) than to the latter approach to money demand, given that #!

is the amount of money that is held by households when they leave the goods market. This

assumption is, on the other hand, able to ensure that a positive amount of money is held

even in a �nite horizon framework (see, e.g., Buiter, 2002).

In accordance with the assumption that the asset market opens at the beginning of the

period, government bonds are non-state contingent such that their payo¤ in period ! now

equals 4!¡1"!¡1. This assumption can often be found in related contributions (see, e.g.,

Carlstrom and Fuerst, 2001) and ensures that the loss function (20) is an approximation

of households� welfare (see Woodford, 2003a).29 The �rst order conditions (6), (7), and

(9) then change to A! = &¡#! ¡ 0% (&!%9!) % (4! ¡ 1)(! 9!+12!+1
) = ¡(!0& (&!+1%9!+1), and

A! = )4!(!
9!+1
2!+1

. Correspondingly, the steady state is characterized by 7' = 7% (E¡ 1) 2(BE),

28Negative coe¢cients on in�ation are also found by Schmidt-Grohé and Uribe (2004) for optimized
simple interest rate rules in a sticky price model with non-negligible transactions frictions and distortionary
taxation.
29Otherwise, the future (instead of the current) interest rate would enter the loss function.
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: = 4), and 7% (4¡ 1) = 47&, and a rational expectations equilibrium of the linearized

model is a set of sequences {b&!% b9!, b:!}1!=0 satisfying:
b:! = G+%b&! ¡ GH%& b9! + )(!b:!+1 + GB!% (22)

+%b&! ¡ H%& b9! = +%(!b&!+1 ¡ H%&(! b9!+1 ¡ b4! +(!b:!+1% (23)

(H%& + +&) b9! = (F&% + +%)b&! + (1¡ I) b4!% (24)

and the transversality condition, given a policy { b4!} and a stationary exogenous process
{bB!}. Apparently, beginning-of-period real balances do not enter the set of equilibrium
conditions (22)-(24), indicating that the private sector behavior does not depend on a

predetermined variable. Hence, for a simple (Taylor-type) interest rate rule satisfying b4! =
J2b:!, the model is entirely forward looking, implying that the equilibrium path is non-

divergent and is unique if all eigenvalues are unstable. Activeness is then necessary and

su¢cient for local determinacy, as in the standard New Keynesian model (see Clarida et

al., 1999, or Woodford, 2001). This result, which holds for any shopping time function

satisfying (2), is summarized in the following proposition.

Proposition 3 Suppose that interest rate policy satis�es b4! = J2b:!. Then the equilibrium
path of the model (22)-(24) is saddle path stable if and only if J2 5 1. Otherwise, the
equilibrium path is indetermined.

Proof. See appendix 6.3.

The predetermined stock of money is irrelevant in the model (22)-(24) and real balances ad-

just freely in a way consistent with a stable and unique equilibrium path. As a consequence,

the intuition for the result summarized in proposition 3 accords to the line of arguments

for the version satisfying 0%& = 0 (see page 12). As the private sector behavior lacks any

history dependence, the equilibrium sequences are forward looking unless monetary policy

is backward looking. Hence, when the central bank is non-inertial, as under discretionary

optimization, lagged realizations of endogenous variables and, thus, beginning-of-period

real balances are irrelevant for nominal interest rate setting. To be more precise, this is

guaranteed if the fundamental solution of the equilibrium under discretionary optimization

is the unique solution, which requires the equilibrium under the optimal plan to exhibit

exclusively unstable eigenvalues. The latter property is, however, not always satis�ed and

applies if and only if the weight O in the loss function is su¢ciently small such that O 6 O,

where O ´ G + 1¡7
:5 ¡ 3"#

:
7((1¡7)
3"#+##

and > ´ (#"##¡3"#4#")2
;(3"#+##)(3"#6+##)

. If the weight O exceeds the

threshold O, there also exist stable non-fundamental solutions featuring an extraneous state

variable. This result is summarized in the following proposition for the case 0%& · 0 with
+%+& 5 H%&F&%, which is apparently ensured by 0%& = 0, but also for the speci�cation (16).
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Proposition 4 Consider that the central bank maximizes (20) s.t. (22)-(24) and that
+%+& 5 H%&F&%. Then the equilibrium path under discretionary optimization is uniquely
determined if and only if O 6 O. In this case, the nominal interest rate is independent of
the beginning-of-period real balances, L b4!2L b9!¡1 = 0. Otherwise (O 5 O), the fundamental
solution is not the unique solution and there exist non-fundamental solutions consistent with
the optimal plan. These solutions exhibit exactly one stable eigenvalue.

Proof. See appendix 6.4.

It should be noted that the results presented in proposition 4 do not rely on the presence

of real balance e¤ects. For O 6 O, the optimal plan under discretion exhibits only unstable

eigenvalues and, thus, necessary implies the economy to evolve in a non-history dependent

way. Hence, the state space representation of the unique solution for the nominal interest

rate takes the form b4! = 4(bB!). Thus, the mere existence of non-negligible transactions
frictions does not (necessarily) call for interest rate policy to respond to changes in real

balances. A feedback rule, which relates the central bank�s instrument to an endogenous

variable, can obviously be written in terms of end-of-period real balances b4! = 4(b9!) or,
equivalently, in terms of in�ation b4! = 4(b:!). For monetary policy under discretionary
optimization there is, thus, no need to consider money as an indicator for interest rate

setting. Concisely, for our alternative speci�cation money is irrelevant for monetary policy

if O 6 O.

Table 2 presents four numerical examples for interest rate feedback rules of the type

4(b:!), where the shopping time function satis�es (16) and the parameter values are taken
from the previous section. The derivation of the feedback rules can be found in appendix

6.5. It should be noted that the welfare based value for the weight of the interest rate

variance in the loss function now reads O¤& = G
,¡1
, )

1
1¡7

1(+
3"#+##

= )O¤, and is, thus, slightly

smaller than in the case of the benchmark model.30 Remarkably, the interest rate feedback

rule is passive even if the central bank neglects the transactions friction, O = 0. This

result is due the real balance e¤ect that induces a rise in the nominal interest rate to exert

an upward pressure on �rms� marginal costs, as it lowers households� willingness to hold

money and, thus, to supply labor. Raising the value for the weight O, leads to a monotonic

decline in the in�ation elasticity, as the central bank becomes increasingly unwilling to

adjust the nominal interest rate, i.e., the opportunity costs of holding money instead of

bonds. Thus, the four entirely forward looking interest rate feedback rules in table 2 fail

to satisfy the condition for determinacy presented in proposition 3. These instrument rules

are, on the one hand, consistent with the equilibrium under discretionary optimization. On

the other hand, they cannot rule out non-fundamental solutions, which allow for changes in

30The di¤erence stems from the property that money demand now satis�es "+! = $!"+%"
&"!+%!

")! ¡ % 1'(1¡()&"!+%!
",!,

whereas the interest elasticity in the benchmark model reads 2"+!32 ",! = ¡ 1'(1¡()
&"!+%!

(see 15).
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expectations to induce the economy to deviate from the steady state on a stable equilibrium

path and can, thus, be self-ful�lling, giving rise to endogenous �uctuations. This property

(Equilibrium Indeterminacy) is summarized by the �rst entries in the last row of table 2.

Table 2 Optimal policy rules under discretion for the alternative model

O = 0 O = 0-5 O = 1 O = O¤& O = O¤&
In�ation elasticity J2 0-91 0-46 0-31 0-067 0-0211

Money elasticity J1 � � � � 0-0205

EI under the instrument/targeting rule yes/� yes/yes yes/yes yes/yes �/yes

Note: The weight N is set equal to 0.085 and O¤& now equals 6.48. �EI� denotes equilibrium indeterminacy.

When the transactions friction is su¢ciently large, such that O 5 O, there is a potential role

for beginning-of-period real balances in the conduct of interest rate policy. The respective

condition can easily be satis�ed, given that the threshold O takes extremely small values,

and does not require the existence of real balance e¤ects. The parametrization presented

in the previous section, for example, leads to O = 0-0066. If O 5 O, then the equilibrium is,

in fact, indetermined under the targeting rule, which is summarized by the second entries

in the last row of table 2. The reason for this property, which contrasts �ndings for the

standard New Keynesian model,31 is that the optimal plan requires the central bank to �ght

changes in in�ation only in a moderate way, to avoid exacerbating the distortions due to the

transactions friction. This strategy gives rise to multiple solutions for the equilibrium under

the targeting rule, i.e., it allows for non-fundamental solutions, which are consistent with the

optimal plan under discretion (see proposition 4). These solutions, which are characterized

by an arbitrary endogenous variable serving as an extraneous state variable, are feasible as

there exists one stable eigenvalue if O 5 O. If one assigns the stable eigenvalue to a non-

predetermined variable, for example, b:!, non-fundamental shocks are known to be able to
a¤ect macroeconomic aggregates.32 Hence, when the latter type of solution is not explicitly

ruled out, for example, by applying McCallum�s (1999) minimum state variable criterion,

the economy under the targeting rule is prone to endogenous �uctuations. In contrast,

assigning the stable eigenvalue to a lagged endogenous variable, which is predetermined

by de�nition, the equilibrium sequences can evolve in a stable and history dependent way,

ruling out endogenous �uctuations.

Suppose that the central bank does not only maximize (20) s.t. (22)-(24) in an dis-

cretionary way, but also aims at avoiding endogenous �uctuations. If its objective is char-

acterized by O 5 O, implying that a non-fundamental equilibrium path is consistent with

31Jensen (2002) shows that the equilibrium under the targeting rule for discretionary optimization is
uniquely determined in the standard New Keynesian model (without transactions frictions).
32See, for example, Bernanke and Woodford (1997) for an application of this principle.
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the optimal plan under discretion, it can easily avoid endogenous �uctuations, by apply-

ing a backward looking interest rate rule. An example for such a rule is (17), featuring

beginning-of-period real balances and in�ation as indicators. Hence, by setting the nominal

interest rate in a history dependent way, the central bank can induce the economy to evolve

according to a non-fundamental solution, which is, nonetheless, consistent with its optimal

plan under discretion. The virtue of this strategy is that interest rate policy can ensure

uniqueness of the equilibrium path, as beginning-of-period real balances serve as a predeter-

mined endogenous state variable. The last column of table 2 presents a numerical example

for such a rule, for the case where O = O¤&. The derivation can be found in appendix 6.6.

The conditions for the policy rule parameters J2 and J1, which ensure saddle path stability

of the model (22)-(24), are derived in appendix 6.7. They are satis�ed for the values of the

non-fundamental rule presented in the last column in table 2.

Corollary 2 Consider that the central bank maximizes (20) with O 5 O s.t. (22)-(24).
Then it can implement a unique equilibrium path, which is history dependent and consistent
with the optimal plan under discretion, if it applies an interest rate rule satisfying b4! =
J2b:! + J1 b9!¡1.
Hence, even if households are entirely forward looking, there is a useful role for beginning-

of-period real balances in the conduct of stabilizing interest rate policies, if the central

bank does not ignore the transactions friction under discretionary optimization. It should

be noted that this strategy can, in principle, also be applied for lagged realizations of other

variables, serving as an indicator for interest rate policy, and also for alternative monetary

policy instruments.

5 Conclusion

In this paper we have demonstrated that money can matter for interest rate policy, if

transactions of goods are not completely frictionless. As households rely on money holdings

to alleviate transactions costs that are measured in form of shopping time, the equilibrium

sequences of consumption and in�ation are not independent of real balances. If one assumes

that the goods market opens before the asset market, then the stock of money held at the

beginning of the period provides transaction services. As beginning-of-period real balances

are predetermined, they serve � regardless of interest rate policy � as a relevant state

variable, implying that a stabilizing interest rate policy should account for changes therein.

In particular, it is shown that the likelihood for interest rate policy to be associated with a

stable and unique equilibrium path rises, if interest rates are set contingent on beginning-

of-period real balances. The latter are further shown to enter interest rate feedback rules

under discretionary optimization of a welfare based central bank loss function. Concisely,

if money constrains economic activities due to transaction frictions, then the central bank
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should � according to conventional stability and e¢ciency criteria � condition interest rates

on the real value of monetary aggregates.

If the timing of markets is reversed and the stock of money held at the end of the

period enters the shopping time function, money is not necessarily relevant for interest

rate policy. In this case the Taylor-principle applies and the optimal plan under discretion

can be implemented by a forward looking interest rate rule. If, however, an optimizing

central bank accounts for the transactions friction, then the equilibrium under the optimal

plan is likely to be indetermined. In this case, the central bank can induce equilibrium

uniqueness and, thus, rule out the possibility of self-ful�lling expectations, if it sets the

interest rate contingent on beginning-of-period real balances, leading to history dependent

equilibrium sequences consistent with the optimal plan. Hence, even if a predetermined

stock of money does not constrain current transactions, a central bank may nevertheless

wish to use monetary aggregates as an indicator for interest rate policy in order to avoid

endogenous �uctuations. In any case, it is the mere existence of a transactions friction

rather than its size that can cause money to matter for interest rate policy.
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6 Appendix

6.1 Proof of proposition 1

In order to derive the conditions for saddle path stability, the deterministic version of the

model (18)-(19) is rewritten asÃ b9!b:!+1
!
=

Ã
¡ 43
¡43+<* + F1

45
¡743+7<*

44
¡43+<* ¡ F2

45
¡743+7<*

¡ 1
7F1

1
7F2

!Ã b9!¡1b:!
!
= A

Ã b9!¡1b:!
!
%

where the characteristic polynomial of A is given by:

Q (R) = R2 +
F1F5 ¡ F2F3 ¡ )F3 + F2J1

(F3 ¡ J1))
R +

F2F3 ¡ F1F4
(F3 ¡ J1))

-

Applying the de�nitions of the composite parameters F* for ? 2 f1% 2% 3% 4% 5g and +& = 2

and F&% = 1 (see 16), the value of Q (R) at R = 0 reads:

Q (0) = det(A) = (£))¡1 (I+%J1 + 2+% ¡ H&%) % where £ ´ J1 ((I ¡ 1)+% ¡ 1) + 2+% ¡ H&%-

Hence,£ 5 0 and Q (0) 5 0 is ensured for I 5 2, : 6 2), provided that +% = +(1+H&%) and

+ ¸ 1. Moreover, the determinant of A is then strictly larger than one, det(A) = Q (0) 5 1,

indicating that there is at least one unstable root and that indeterminacy (two stable roots)

cannot occur. The value of Q (R) at R = 1 is further given by

Q (1) = (£))¡1 [(J2 ¡ 1)G (2+% ¡ H&%)¡ J1 (G ((I ¡ 2)+% + H&%)¡ (1¡ )) (1 + +%))] %

implying that Q (1) 6 0 and that is a stable positive eigenvalue, if and only if

J2 6 1 + J1¢1% where ¢1 ´
G ((I ¡ 2)+% + H&%)¡ (1¡ )) (1 + +%)

G (2+% ¡ H&%) -

To disclose the conditions for the existence of a negative stable root, we further examine

the value of Q (R) at R = 1, which is given by

Q (¡1) = (£))¡1 f[2 (1 + ))¡ G (J2 ¡ 1)] (2+% ¡ H&%)
+J1 [(1 + )) ((2I ¡ 1)+% ¡ 1) + G ((I ¡ 2)+% + H&%)]g -

implying that Q (¡1) 6 0 and that there is a stable negative eigenvalue if and only if

J2 5 1+
2 (1 + ))

G
+J1¢2% where ¢2 ´

(1 + )) ((2I ¡ 1)+% ¡ 1) + G ((I ¡ 2)+% + H&%)
G (2+% ¡ H&%) 5 0.

Given that ¢1 6 ¢2, we can conclude that the equilibrium is saddle path stable if and

only if J2 6 1 + J1¢1 or J2 5fJ2 + J1¢2, where fJ2 ´ 1 + 2(1+7)
5 , and is non-oscillatory if

J2 6 1+J1¢1 and oscillatory if J2 5fJ2+J1¢2. Otherwise, J2 2 (1 + J1¢1, fJ2 + J1¢2),
there exist two unstable roots indicating an explosive equilibrium path. ¥
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6.2 Interest rate feedback rules under discretionary optimization

The policy problem for the benchmark model (see de�nition 1) can be summarized as

max!2!=!%!=!1!= !-!¡(0
1X
!=0

)!
½
1

2

³
:̂2! + Nb&2! + O b42!´

+ F1! [(1¡ GH%&) b:! ¡ G+%b&! ¡ )(!b:!+1 + GH%& b9!¡1 ¡ GbB!]
+ F2!

h
+%b&! ¡ H%& b9!¡1 + H%&b:! ¡ +%(!b&!+1 + H%& b9! ¡ (H%& + 1)(!b:!+1 +(! b4!+1i

+ F3!

h
(H%& + +&) b9!¡1 + I b4! ¡ (+% + F&%)b&! ¡ (H%& + +&) b:!io -

The �rst order conditions under discretionary optimization are given by

0 = :̂! + (1¡ GH%&)F1! + H%&F2! ¡ (H%& + +&)F3!% (25)

0 = Nb&! ¡ G+%F1! + +%F2! ¡ (+% + F&%)F3!% (26)

0 = O b4! + IF3!% (27)

0 = )GH%&(!F1!+1 ¡ )H%&(!F2!+1 + H%&F2! + ) (H%& + +&)(!F3!+1- (28)

Eliminating the multiplier F3! with (27) in (25) and in (26) leads to the following conditions

for the multiplier F2! and F1!

F2! ´ S1b:! + S2b&! + S3 b4!% (29)

F1! ´ S4b:! + S5b&! + S6 b4!% (30)

where S1 ´ ¡
¡
H&% + G

¡1 (1¡ GH&%)
¢¡1

, S2 ´ N (G+%)¡1 (1¡ GH&%)S1%
S3 ´

h
I¡1O (+& + H&%) + (IG+%)¡1 O (+% + F&%) (1¡ GH&%)

i
S1%

S4 ´ G¡1S1, S5 = N (G+%)¡1 + G¡1S2% S6 = (IG+%)¡1 O (+% + F&%) + G¡1S3-

With (27), (29) and (30), condition (28) can then be written as a targeting rule

0 = )H%& (GS4 ¡ S1)(!b:!+1 + )H%& (GS5 ¡ S2)(!b&!+1% (31)

+ )
¡
H%&GS6 ¡ H%&S3 ¡ (H%& + +&) I¡1O

¢
(! b4!+1 + H%&S1b:! + H%&S2b&! + H%&S3 b4!-

Using the money demand condition (15), consumption is then eliminated in (31), leading

to the following condition of the optimal plan under discretion

0 = T1(!b:!+1 + T2 b9! + T3(! b4!+1 ¡ T4b:! ¡ T5 b9!¡1 ¡ T6 b4!% (32)

where T1 ´ ¡)H%& (GS5 ¡ S2)
H%& + +&
+% + F&%

, T2 ´ ¡T1%

T3 ´ )
³
H%& (GS5 ¡ S2) I (+% + F&%)¡1 + H%&GS6 ¡ H%&S3 ¡ (H%& + +&) I¡1O

´
T4 ´ ¡H%&

µ
S1 ¡ S2

H%& + +&
+% + F&%

¶
% T5 ´ ¡H%&S2

H%& + +&
+% + F&%

, T6 ´ ¡
µ
H%&S2

I

+% + F&%
+ H%&S3

¶
-
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Applying (13) and (14), where consumption is eliminated by (15), the equilibrium conditions

under discretionary optimization can, therefore, be summarized by

T1(!b:!+1 + T2 b9! + T3(! b4!+1 = T4b:! + T5 b9!¡1 + T6 b4!% (33)

)(!b:!+1 = (1¡ GT7) b:! + GT7 b9!¡1 ¡ GT9 b4! ¡ GB!% (34)
(T7 + 1)(!b:!+1 ¡ T7 b9! + (T9 ¡ 1)(! b4!+1 = T7b:! ¡ T7 b9!¡1 + T9 b4!% (35)

where T7 ´ H%& ¡ +% H%& + +&
+% + F&%

and T9 ´ +% I

+% + F&%
-

Apparently, the system (33)-(35) exhibits a backward looking element as the current real-

izations of consumption and in�ation are not independent of b9!¡1. Hence, the fundamental
(minimum state) solution of the optimal allocation features the eigenvalue, T1, and reads

b9! = T1 b9!¡1 + T1/B!% (36)b:! = T21 b9!¡1 + T2/B!% (37)b4! = T-1 b9!¡1 + T-/B!% (38)

where B! satis�es (!B!+1 = JB!. We proceed by applying the solution (36)-(38) for (33)-

(35), to identify the structural composition of the undetermined coe¢cients. This leads to

the following conditions:

0 = T1/ (T2 + T1T21 + T3T-1) + T2/ (T1J¡ T4) + T-/ (T3J¡ T6) % (39)

0 = G+ GT9T-/ + )T21T1/ + T2/ ()J+ GT7 ¡ 1) % (40)

0 = T2/ (J (T7 + 1)¡ T7) + T-/ (J (T9 ¡ 1)¡ T9) + T1/ (T21 (T7 + 1)¡ T7 + T-1 (T9 ¡ 1)) %
(41)

0 = T2T1 ¡ T5 + T21 (T1T1 ¡ T4) + T-1 (T3T1 ¡ T6) % (42)

0 = GT9T-1 ¡ GT7 + T21 ()T1 ¡ 1 + GT7) % (43)

0 = T7 (1¡ T1) + T21 (T1 (T7 + 1)¡ T7) + T-1 (T1 (T9 ¡ 1)¡ T9) % (44)

The three conditions (42)-(44), are su¢cient to characterize the deterministic part of the

solution, T1, T-1, and T21. Precisely, with (42)-(44) we can express T-1 and T21 as

functions of the eigenvalue T1 :

T21 = ¡
T2T1 ¡ T5 + >7

>9
(T3T1 ¡ T6)

T1T1 ¡ T4 + 1
5>9
(T3T1 ¡ T6) (1¡ )T1 ¡ GT7)

% (45)

T-1 =
T5 ¡ T2T1 ¡ GT4T7 ¡ GT5T7 ¡ )T5T1 + GT1T7T1 + GT2T7T1 + )T2T21
T3T1 ¡ T6 ¡ GT4T9 + GT6T7 + )T6T1 + GT1T9T1 ¡ GT3T7T1 ¡ )T3T21

- (46)

Note that inserting (45) and (46) in (44) delivers a cubic equation in T1, the characteristic

equation, which is only numerically examined in this paper.
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Turning to the remaining coe¢cients on the exogenous state, T1/, T2/, and T-/, we

have to apply the conditions (39)-(41). At �rst, the coe¢cient T1/, which is not of further

interest for our analysis, is eliminated by (39) in (40) and in (41). The coe¢cients T2/ and

T-/ can then be written as functions of T1, T-1, and T21 :

T-/=¡G¡11 % (47)

T2/=2G
¡1
1 % (48)

where 1´
¡
GT9 ¡ )T21U¡11 (JT3 ¡ T6)

¢¡2 ¡)J+ GT7 ¡ )T21U¡11 (JT1 ¡ T4)¡ 1
¢
,

2´
¡
J (T9 ¡ 1)¡ T9 ¡ U¡11 (JT3 ¡ T6) U2

¢ ¡
J (T7 + 1)¡ T7 ¡ U¡11 (JT1 ¡ T4) U2

¢¡1
%

U1´ T2 + T1T21 + T3T-1% U2 ´ T21 (T7 + 1)¡ T7 + T-1 (T9 ¡ 1) -

Thus, the fundamental solution for the interest rate b4! = T-1 b9!¡1 + T-/B! is determined
by (46) and (47), and the solution for in�ation b:! = T21 b9!¡1 + T2/B! by (45) and (48).
We can then derive an interest rate feedback rule of the form b4! = J2b:! + J1 b9!¡1 by
eliminating the exogenous state with B! =

1
>),
b:! ¡ >)*

>),
b9!¡1 in the fundamental solution

for the interest rate. The feedback rule is, thus, given by

b4! = J2b:! + J1 b9!¡1% (49)

where J2 = T-/2T2/ and J1 = T-1 ¡ T-/T212T2/-

To obtain numerical examples for the feedback rule (49), we set the coe¢cient T1 equal to

a stable eigenvalue of the matrix A (see 33-35):

A =

0BB@
T1 T2 T3

) 0 0

T7 + 1¡T7 T9 ¡ 1

1CCA
¡10BB@

T4 T5 T6

1¡ GT7 GT7 ¡GT9
T7 ¡T7 T9

1CCA %
where a saddle path con�guration, i.e., stability and uniqueness of the fundamental solution

(36)-(38), requires A to exhibit exactly one stable eigenvalue. Then, one can derive values

for T-1 and T21 by (45) and (46), and for T2/ and T-/ by (48) and (47). With these

coe¢cients, one obtains the weights for the feedback rule given in (49).

6.3 Proof of proposition 3

Eliminating in�ation with the money demand condition (24) and the nominal interest rate

with b4! = J2b:!, the model (22)-(24) can be reduced to the following 2£ 2 system in real

balances and consumption:

)(!b:!+1 = (1¡ GV?J2) b:! ¡ G (+% ¡V&)b&! ¡ GbB!% (50)

(1 +V?J2)(!b:!+1 + (+% ¡V&)(!b&!+1 = (1 +V?)J2b:! + (+% ¡V&)b&!% (51)
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where V& ´ H%& 4#"+#"3"#+##
and V? ´ H%& 6¡1

3"#+##
. The model (50)-(51) exhibits no predetermined

variable, implying that saddle path stability requires two unstable eigenvalues. To derive

the respective conditions, the deterministic version of the model (50)-(51) is rewritten asÃb:!+1b&!+1
!
=

0@ ¡¡1+5@-<)
7 ¡G#"¡@#

7
¡1+5@-<)¡@-<)+@

2
-<
2
)5+7<)+7<)@-

7(#"¡@#)
5+5@-<)+7

7

1AÃb:!b&!
!
= A

Ãb:!b&!
!
-

The characteristic polynomial of A can be simpli�ed to Q (R) = R2¡)¡1 () + 1 + G)R +
)¡1 (1 + GJ2). The determinant of A reads det(A) = )¡1 (1 + GJ2) and is, thus, strictly

larger than one for J2 ¸ 0. The trace, trace(A) = )¡1 () + 1 + G), is strictly positive, and

det(A)¡ trace(A) = ¡)¡1 (¡GJ2 + G+ )) %
det(A) + trace(A) = )¡1 (2 + GJ2 + G+ )) 5 0-

Hence, det(A) ¡ trace(A) 5 ¡1 , 1 6 J2 and det(A) + trace(A) 5 ¡1, revealing that
activeness is necessary and su¢cient for saddle path stability. ¥

6.4 Proof of proposition 4

To establish the claims made in the proposition, we �rst characterize the optimal plan under

discretionary optimization for the model (22)-(24). The policy problem reads

max!2!=!%!= !1!= !-!¡(0
1X
!=0

)!
½
1

2

³
:̂2! + Nb&2! + O b42!´ + F1! [b:! ¡ G+%b&! + GH%& b9! ¡ )(!b:!+1 ¡ GbB!]

+ F2!

h
+%b&! ¡ H& b9! ¡ +%b&!+1 + H%&(! b9!+1 + b4! ¡(!b:!+1i

+F3!

h
(H%& + +&) b9! ¡ (F&% + +%)b&! + (I ¡ 1) b4!io -

The �rst order conditions under discretionary optimization are, therefore, given by

b:! + F1! = 0% (52)

Nb&! ¡ G+%F1! + +%F2! ¡ (F&% + +%)F3! = 0% (53)

O b4! + F2! + F3!(I ¡ 1) = 0% (54)

GH%&F1! ¡ H%&F2! + (H%& + +&)F3! = 0% (55)

Eliminating the multiplier F1! with (52) in (53) and isolating the multiplier F2! and multi-

plier F3!, leads to

F3! =
N

F&% + +%I
b&! + G+%

F&% + +%I
:̂! ¡ +%O

F&% + +%I
b4!% (56)

F2! = ¡
I ¡ 1

F&% + +%I
Nb&! ¡ I ¡ 1

F&% + +%I
G+%:̂! ¡ +% + F&%

F&% + +%I
O b4!- (57)
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Applying (56) and (57), for F3! and F2! in (55) delivers the targeting rule

0 = Nb&! + GW:̂! ¡ OW b4!% where W ´ +%+& ¡ H%&F&%
H%&I + +&

- (58)

Hence, for H%& = F&% = O = 0, the targeting rule equals to one derived in Clarida et

al. (1999). Eliminating money with b9! = 4#"+#"
3"#+##

b&! ¡ 6¡1
3"#+##

b4! and consumption withb&! = AB
;
b4! ¡ 5A

; :̂!, the equilibrium sequences for the nominal interest rate and in�ation

under discretionary optimization satisfy

)(!b:!+1 = (1 + GK1) b:! ¡ K2G b4! ¡ GB!% (59)

(K1 ¡ 1)(!:̂!+1 ¡ K2(! b4!+1 = K1:̂! ¡ (K2 + 1) b4!% (60)

where K1 ´
GW

N

H%&I + +&
H%& + +&

and K2 ´
OW

N

H%&I + +&
H%& + +&

+ H%&
I ¡ 1
H%& + +&

-

Suppose in what follows that +%+& 5 H%&F&%, which is for example satis�ed for (16), implying

+%+& ¡ H%&F&% = (2+ ¡ 1) H%& + 2+ 5 0. Then the composite parameters W, K1, and K2 are
strictly positive. The deterministic version of the equilibrium conditions under discretionary

optimization (59) and (60) readsÃb:!+1b4!+1
!
=

Ã
1
7 (1 + GK1) ¡ 1

7K2G
C1+5C

2
1¡1¡5C1¡C17
7C2

¡C25C1¡C25¡7C2¡7
7C2

!Ãb:!b4!
!
= A

Ãb:!b4!
!
%

where the characteristic polynomial of A is given by

Q (R) = R2 ¡ ()K2)¡1 (K2 + K2G+ )K2 + ))R + ()K2)¡1 (K2 + 1 + GK1) - (61)

The determinant ofA is strictly larger than one, Q (0) = det(A) = ()K2)
¡1 (K2 + 1+ GK1) 5

1, indicating that there exists at least one unstable eigenvalue. The trace of A is given

by trace(A) = ()K2)
¡1 (K2 + K2G+ )K2 + )). To disclose the conditions for equilibrium

uniqueness, we further examine

det(A) + trace(A) = K¡12 )
¡1 () + 2K2 + )K2 + GK1 + GK2 + 1) 5 0%

det(A)¡ trace(A) = K¡12 )¡1 (GK1 ¡ )K2 ¡ ) ¡ GK2 + 1) %

ensuring that det(A)+trace(A) 5 ¡1. Hence, the equilibrium under discretionary opti-

mization is uniquely determined if and only if K1 5 K2 ¡ (1¡ )) 2G, det(A)¡trace(A) 5
¡1. This condition can be written as a restriction on the loss function weight O :

O 6 O % where O ´ G+ 1¡ )
>G

¡ H%&
>

)2(1¡ ))
H%& + +&

% and > ´ (+%+& ¡ H%&F&%)2
N (H%& + +&) (H%&I + +&)

, (62)

where we used that I ¡ 1 = )2(1 ¡ )) and : = 1. Hence, if (62) is satis�ed, both roots

are unstable and the fundamental solution, which exhibits no endogenous state variable,
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is the unique solution. The equilibrium path under discretionary optimization is then

forward-looking and satis�es L b4!2L b9!¡1 = 0. If O 5 O, the system (59) and (60) exhibits

one unstable and one stable eigenvalue and, therefore, allows for a stable non-fundamental

solution, featuring exactly one endogenous state variable. This completes the proof of the

proposition. ¥

6.5 Interest rate feedback rules for the alternative model

Rather than to reinterpret the targeting rule (58) as a policy rule, b4! = 5A
AB :̂! +

;
ABb&!, we

aim at deriving an interest rate feedback rule of the form b4! = J2:̂!. For this, we apply

the fundamental solution for the optimal plan under discretion. The latter is characterized

by (58) and (22)-(24), and is entirely forward looking. The fundamental (minimum state)

solution thus reads b:! = T2/B!, and b4! = T-/B!% (63)

where (!B!+1 = JB!. Inserting the fundamental solution (63) in (59) and (60) leads to the

following conditions for the coe¢cients T2/ and T-/ : T2/ ()J¡ (1 + GK1))+K2GT-/+G = 0
and ((K1 ¡ 1) J¡ K1) T2/ + ((K2 + 1)¡ K2J) T-/ = 0. Thus, these coe¢cients satisfy

T-/ = ¡G [(K1 ¡ 1) J¡ K1] U¡1 and T2/ = G [(K2 + 1)¡ K2J] U¡1%

where U ´ ¡K2J(1 + G) + (1 + K2) (1¡ )J) + GK1 + K2J2). The interest rate feedback rule
given by b4! = (T-/2T2/) b:!, therefore satis�es

b4! = J2b:!, where J2 =
J+ K1 (1¡ J)
1 + K2(1¡ J)

- (64)

Hence, if K1 5 1+K2 the optimal rule under discretion is active, J2 5 1, and thus associated

with equilibrium uniqueness (see proposition 3). By using the de�nitions of K1 and K2, one

can rewrite the condition for activeness as (G¡ O)W2N 5 1. For +%+& 5 H%&F&% ) W 5 0,

which is for example ensured by (16), activeness of the feedback rule (64), therefore, requires

the weight on the interest rate variance to be su¢ciently small for a given degree of price

rigidity.

6.6 Implementing the optimal plan with a backward-looking rule

The optimal allocation for model with the alternative timing of markets, which is given by

(59) and (60), exhibits one stable eigenvalue if O 5 O (see proof of proposition 4). Then the

fundamental solution is not unique and an alternative solution with a lagged endogenous

variable as an extraneous state is also stable/feasible. In this case, the optimal plan can

alternatively be implemented by a backward looking interest rate feedback rule of the type

(17). To identify this rule, the allocation under discretionary optimization is rewritten by
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replacing in�ation with

:̂! = ¡W2 b9! + W3 b4!, where W2 ´ µF&% + +%
H%& + +&

WG

N

¶¡1
and W3 ´ O

G
¡ I ¡ 1
F&% + +%

N

WG
% (65)

which stems from the money demand condition, b9! = 4#"+#"
3"#+##

b&!¡ 6¡1
3"#+##

b4!, and the targeting
rule, b&! = AB

;
b4! ¡ A5

; :̂!, in condition (59) and (60), such that the equilibrium conditions

under the optimal plan can be summarized by

¡W2)(! b9!+1 + W3)(! b4!+1 =¡ (1 + GK1)W2 b9! + (W3 + GW4) b4! ¡ GB!%(66)
¡ (K1 ¡ 1)W2(! b9!+1 + (W4 ¡ W3)(! b4!+1=¡W5 b9! + (W4 ¡ 1) b4!% (67)

where W4´ K1W3 ¡ K2 and W5 ´
+& + H&%I

+% + F&%
W.

The eigenvalues of (66)-(67) can again be derived from the characteristic equation Q (R) =

0, where Q (R) is given in (61). Now suppose that O 5 O. Then there exists exactly one

stable eigenvalue (see proposition 4), implying that the following non-fundamental solution

b9!= T1 b9!¡1 + T1/B!% (68)b4!= T-1 b9!¡1 + T-/B!% (69)

and b:! = T21 b9!¡1 + T2/B! , is feasible. Applying the generic solution form (68)-(69) for

(66) and (67) leads to the following conditions for the undetermined coe¢cients

0=W5T1 ¡ W2T21 (K1 ¡ 1) + T-1 (T1 (W4 ¡ W3)¡ W4 + 1) % (70)

0= T-/ (W4 ¡ J (W4 ¡ W3)¡ 1) + T1/ (W2 (J+ T1) (K1 ¡ 1)¡ T1 (W4 ¡ W3)¡ W5) % (71)
0=W2T1 (GK1 + 1)¡ )W2T21 + T-1 ()W3T1 ¡ GW4 ¡ W3) % (72)

0=G+ T-/ ()JW3 ¡ GW4 ¡ W3) + T1/ ()W3T-1 ¡ )W2 (J+ T1) + W2 (GK1 + 1)) - (73)

Condition (70) delivers T-1 as a function of T1. Eliminating T-1 in (72) leads to a cubic

equation in T1. Two of the roots are identical with roots of (61), while the last root equals

zero, which refers to the fundamental solution (63). Using (70) and combining (71) and

(73), the remaining coe¢cients can be written as functions of a non-zero eigenvalue T1 :

T-1 =
£¡W5T1 + W2T21 (K1 ¡ 1)¤ 2 (T1 (W4 ¡ W3)¡ W4 + 1) %

T1/ = Gz¡1 (W4 ¡ J (W4 ¡ W3)¡ 1)X¡1% and T-/ = ¡Gz¡1%
where X ´ W2 (J+ T1) (K1 ¡ 1)¡ T1 (W4 ¡ W3)¡ W5%
z ´ )JW3 ¡ GW4 ¡ W3 ¡ ()W3T-1 ¡ )W2 (J+ T1) + W2 (GK1 + 1)) (W4 ¡ J (W4 ¡ W3)¡ 1) X¡1-

To solve for the feedback rule we further apply the general solution for real balances (68)

for (65), leading to the following expression: B! = ¡ (W2T1/)¡1 :̂! ¡ (T12T1/) b9!¡1 +
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W3 (W2T1/)
¡1 b4!. Eliminating the exogenous state variable with the latter in the solutionb4! = T-1 b9!¡1 + T-/B!, leads to the following feedback rule for the nominal interest rate

b4! = J2:̂! + J1 b9!¡1% where J2 = T-/
T-/W3 ¡ W2T1/ and J1 = W2

T-/T1 ¡ T-1T1/
T-/W3 ¡ W2T1/ %

which implements a history dependent equilibrium path which is consistent with the optimal

plan under discretion. If O 5 O, the equilibrium exhibits a saddle path con�guration as the

number of stable eigenvalues equals the number of predetermined variables.

6.7 Saddle path stability for a backward looking policy rule

In order to demonstrate the determinacy properties of a backward looking policy rule in the

model with forward looking households presented in section 4 of the paper, the following

proposition summarizes su¢cient conditions for saddle path stability under interest rate

rules with a non-zero coe¢cient on beginning-of-period real balances.

Proposition 5 Suppose that interest rate policy satis�es b4! = J2b:! + J1 b9!¡1. Then the
equilibrium path of the alternative model (22)-(24) with (16) is saddle path stable if

?-) J15 0 and J2 6 min f1 + J1¢3, J1¢4 ¡fJ2g , or

??-) J15¢5 and J2 6 1 + J1¢3%

where¢3 ´ (6¡1)5#"¡(1¡7)(1+#")
(2#"¡3"#)5 , ¢4 ´ (((26¡1)#"+1)(1+7)+(6¡1)5#")

(2#"¡3"#)5 , and ¢5 ´ (2#"¡3"#)(5+1+7)
#"(6+67¡7)+1 .

Proof. Applying a backward looking interest rate rule b4! = J2b:! + J1 b9!¡1 for the model
(22)-(24), and eliminating 9!+1 by b9!+1 = 4#"+#"

3"#+##
b&!+1 ¡ (6¡1)<)

3"#+##
b:!+1 ¡ (6¡1)<*

3"#+##
b9! leads to

a 3£ 3 system. Its deterministic version reads

¡GH%& b9! + )b:!+1= b:! ¡ G+%b&!%
J1 b9!¡1 + J2b:! + +%b&!=(H%& + , (I ¡ 1)J1) b9! + (1 + , (I ¡ 1)J2) b:!+1

+(+% ¡ , (1 + +%))b&!+1%
(H%& + +&) b9!=(1¡ I)J1 b9!¡1 + (1¡ I)J2b:! + (F&% + +%)b&!%

where , = H%&2(H%& + 2). Using that the shopping-time speci�cation (16) implies F&% = 1

and +& = 2% the eigenvalues of the model are the roots of the characteristic polynomial of

A, which is characterized by
³ b9! b:!+1 b&!+1´0 = A³ b9!¡1 b:! b&!´0 and

A =

0BB@
¡GH%& ) 0

H%& + , (I ¡ 1)J1 1 + , (I ¡ 1) J2 +% ¡ , (1 + +%)
H%&2, 0 0

1CCA
¡10BB@

0 1 ¡G+%
J1 J2 +%

(1¡ I)J1 (1¡ I)J2 1 + +%

1CCA %
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The characteristic polynomial of 1 is given by

Q (R) =R3 +
¡H%&©(G+ 1+ )) + (I ¡ 1)),J1+%

)H%&©
R2

+
H%&©+©GJ2H%& + ((1¡ IG+ G¡ I ¡ )I)+% ¡ )),J1

)H%&©
R +

, (1 + I+%)

)H%&©
J1%

where © = +% ¡ , (1 + +%) = 2#"¡3"#
3"#+2

5 0. Hence, Q (0) = ¡det(A) = $(1+6#")
73"#©

J1, implying

that there is at least one negative eigenvalue if J1 5 0. For J1 = 0 ) det(A) = 0,

one stable eigenvalue equals zero and the result in proposition 3 applies. To establish the

existence of one positive and stable eigenvalue, Q (R) at R = 1, given by

Q (1) =
1

)H%&©
[GH%&©(J2 ¡ 1) + , ((1¡ )) (1 + +%)¡ (I ¡ 1)G+%) J1] %

has to be negative, Q (1) 6 0, which is ensured by

J2 6 1 + J1¢3, where ¢3 ´ ((2+% ¡ H%&)G)¡1 ((I ¡ 1)G+% ¡ (1¡ )) (1 + +%)) - (74)

To rule out the existence of another stable eigenvalue, Q (R) at R = ¡1, given by

Q (¡1) = ¡©2 (1 + )) H%& ¡©(1 + J2)GH%& + J1, ([(2I ¡ 1)+% + 1] (1 + )) + (I ¡ 1)G+%)
)H%&©

%

has to be positive, Q (¡1) 5 0% which requires

J2 6 J1¢4 ¡fJ2, where ¢4 ´ ((2I ¡ 1)+% + 1) (1 + )) + (I ¡ 1)G+%
(2+% ¡ H%&)G - (75)

Hence, the model is saddle path stable if J1 5 0 and J2 6 min f1 + J1¢3, J1¢4 ¡fJ2g.
Instead of applying condition (75), it is su¢cient for saddle path stability to ensure that

J1 is su¢ciently large such that

J1 5 ¢5% where ¢5 ´ (2+% ¡ H%&) (G+ 1 + )) (+% (I + I) ¡ )) + 1)¡1 5 0%

and that (74) is satis�ed, as J1 5 0 and (75) are then guaranteed. This completes the

proof of the proposition. ¥

It should be noted that the conditions ?- and ??- presented in proposition 5 ensure the

single stable eigenvalue to lie between zero and one, such that the equilibrium path is non-

oscillatory. Applying the parameter values presented in section 3.3, leads to the following

numerical values for the composite parameter ¢3 = 67- 24, ¢4 = 5310, fJ2 = 78-41, and

¢5 = 0-015. Hence, even small values for both coe¢cients in the backward looking policy

rule, J2 and J1, are su¢cient to ensure saddle path stability for the model with the alter-

native timing of markets. This includes the parameter values in the last column in table 2

for O = O¤&.
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